scholarly journals Analysis of Malaysia electricity demand and generation by 2040

2021 ◽  
Vol 880 (1) ◽  
pp. 012050
Author(s):  
Azreen Harina Azman ◽  
Nurul Nadrah Aqilah Tukimat ◽  
M.A. Malek ◽  
Ros Faizah Che

Abstract Malaysia as an emerging country, increasing population, gross domestic product (GDP) growth and enhanced access to electricity lead to an expanding of demand. The crucial parameters to determine future energy demand and generation projections are GDP, population growth rates and weather implications due to climate change. The study aims to forecast the future trends based on the historical values and also to project the future electricity demand and generation. The electricity demand and generation growth evaluated based on 2 main elements which are population growth and weather parameters (maximum temperature and rainfall). The future trends are forecasted based on the historical values of population and weather parameters. There is 152.9% of population growth in 32 years. The population will keep on developing yet with the lower rate. The GDP trend and the population growth mirrors the pattern of emissions. The findings from Statistical Downscaling Model (SDSM) analysis shows that the rainfall distribution will diminish while the temperature will expand that depict the climate change impact as time passes by. In 2020, the most extreme temperature recorded is 31.7 °C while in 2040, the estimated greatest temperature is 32.3 °C. There will be a 0.6 °C increase in temperature in 20 years. The demand in 2040 will be expanded 50.3% more than demand in 2020. The estimated electricity demand per capita will continue expanding because of the augmentation of the populace and the significance of electricity in daily activities. The pattern shows that electricity demand and generation in Malaysia will be expanding massively year by year.

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Theodoros Katopodis ◽  
Iason Markantonis ◽  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos

In the context of climate change and growing energy demand, solar technologies are considered promising solutions to mitigate Greenhouse Gas (GHG) emissions and support sustainable adaptation. In Greece, solar power is the second major renewable energy, constituting an increasingly important component of the future low-carbon energy portfolio. In this work, we propose the use of a high-resolution regional climate model (Weather Research and Forecasting model, WRF) to generate a solar climate atlas for the near-term climatological future under the Representative Concentration Pathway (RCPs) 4.5 and 8.5 scenarios. The model is set up with a 5 × 5 km2 spatial resolution, forced by the ERA-INTERIM for the historic (1980–2004) period and by the EC-EARTH General Circulation Models (GCM) for the future (2020–2044). Results reaffirm the high quality of solar energy potential in Greece and highlight the ability of the WRF model to produce a highly reliable future climate solar atlas. Projected changes between the annual historic and future RCPs scenarios indicate changes of the annual Global Horizontal Irradiance (GHI) in the range of ±5.0%. Seasonal analysis of the GHI values indicates percentage changes in the range of ±12% for both scenarios, with winter exhibiting the highest seasonal increases in the order of 10%, and autumn the largest decreases. Clear-sky fraction fclear projects increases in the range of ±4.0% in eastern and north continental Greece in the future, while most of the Greek marine areas might expect above 220 clear-sky days per year.


2020 ◽  
Author(s):  
Luc Yannick Andréas Randriamarolaza ◽  
Enric Aguilar ◽  
Oleg Skrynyk

<p>Madagascar is an Island in Western Indian Ocean Region. It is mainly exposed to the easterly trade winds and has a rugged topography, which promote different local climates and biodiversity. Climate change inflicts a challenge on Madagascar socio-economic activities. However, Madagascar has low density station and sparse networks on observational weather stations to detect changes in climate. On average, one station covers more than 20 000 km<sup>2</sup> and closer neighbor stations are less correlated. Previous studies have demonstrated the changes on Madagascar climate, but this paper contributes and enhances the approach to assess the quality control and homogeneity of Madagascar daily climate data before developing climate indices over 1950 – 2018 on 28 synoptic stations. Daily climate data of minimum and maximum temperature and precipitation are exploited.</p><p>Firstly, the quality of daily climate data is controlled by INQC developed and maintained by Center for Climate Change (C3) of Rovira i Virgili University, Spain. It ascertains and improves error detections by using six flag categories. Most errors detected are due to digitalization and measurement.</p><p>Secondly, daily quality controlled data are homogenized by using CLIMATOL. It uses relative homogenization methods, chooses candidate reference series automatically and infills the missing data in the original data. It has ability to manage low density stations and low inter-station correlations and is tolerable for missing data. Monthly break points are detected by CLIMATOL and used to split daily climate data to be homogenized.</p><p>Finally, climate indices are calculated by using CLIMIND package which is developed by INDECIS<sup>*</sup> project. Compared to previous works done, data period is updated to 10 years before and after and 15 new climate indices mostly related to extremes are computed. On temperature, significant increasing and decreasing decade trends of day-to-day and extreme temperature ranges are important in western and eastern areas respectively. On average decade trends of temperature extremes, significant increasing of daily minimum temperature is greater than daily maximum temperature. Many stations indicate significant decreasing in very cold nights than significant increasing in very warm days. Their trends are almost 1 day per decade over 1950 – 2018. Warming is mainly felt during nighttime and daytime in Oriental and Occidental parts respectively. In contrast, central uplands are warming all the time but tropical nights do not appear yet. On rainfall, no major significant findings are found but intense precipitation might be possible at central uplands due to shortening of longest wet period and occurrence of heavy precipitation. However, no influence detected on total precipitation which is still decreasing over 1950 - 2018. Future works focus on merging of relative homogenization methodologies to ameliorate the results.</p><p>-------------------</p><p>*INDECIS is a part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).</p>


2020 ◽  
Author(s):  
Maria Francisca Cardell ◽  
Arnau Amengual ◽  
Romualdo Romero

<p>Europe and particularly, the Mediterranean countries, are among the most visited tourist destinations worldwide, while it is also recognized as one of the most sensitive regions to climate change. Climate is a key resource and even a limiting factor for many types of tourism. Owing to climate change, modified patterns of atmospheric variables such as temperature, rainfall, relative humidity, hours of sunshine and wind speed will likely affect the suitability of the European destinations for certain outdoor leisure activities.</p><p>Perspectives on the future of second-generation climate indices for tourism (CIT) that depend on thermal, aesthetic and physical facets are derived using model projected daily atmospheric data and present climate “observations”. Specifically, daily series of 2-m maximum temperature, accumulated precipitation, 2-m relative humidity, mean cloud cover and 10-m wind speed from ERA-5 reanalysis are used to derive the present climate potential. For projections, the same daily variables have been obtained from a set of regional climate models (RCMs) included in the European CORDEX project, considering the rcp8.5 future emissions scenario. The adoption of a multi-model ensemble strategy allows quantifying the uncertainties arising from the model errors and the GCM-derived boundary conditions. To properly derive CITs at local scale, a quantile–quantile adjustment has been applied to the simulated regional scenarios. The method detects changes in the continuous CIT cumulative distribution functions (CDFs) between the recent past and successive time slices of the simulated climate and applies these changes, once calibrated, to the observed CDFs. </p><p>Assessments on the future climate potential for several types of tourist activities in Europe (i.e., sun, sea and sand (3S) tourism, cycling, cultural, football, golf, nautical and hiking) will be presented by applying suitable quantitative indicators of CIT evolutions adapted to regional contexts. It is expected that such kind of information will ultimately benefit the design of mitigation and adaptation strategies of the tourist sector.</p>


Author(s):  
Femi S. Omotayo ◽  
Philip G. Oguntunde ◽  
Ayorinde A. Olufayo

This study was carried to determine the trend of cocoa yield and climatic variables and assessment of the impact of climate change on the future yield of cocoa in Ondo State, Nigeria. Annual trend statistics for cocoa yield and climatic variables were analyzed for the state using Mann-Kendall test for trend and Sen’s slope estimates. Downscaled data from six Global Circulation Models (GCMs) were used to examine the impact of climate change on the future yield of cocoa in the study area. The results of trends analysis in Ondo State showed that yield decreased monotonically at the rate of 492.18 tonnes/yr (P<0.05). An increased significant trend was established in annual rainfall trend. While Maximum temperature, minimum temperature, and mean temperature all increased at the rate of 0.02/yr (P<0.001). The ensemble of all the GCMs projected a mid-term future decrease of about 9,334 tonnes/yr by 2050 and a long-term future decrease of 13,504 tonnes/yr of cocoa by 2100. The economic implication of these is that, if the projected change in the yield of cocoa as predicted by the ensemble of all the GCMs should hold for the future, it means that Ondo state may experience a loss of about $22,470,018.22 and $32,308,584.32 by the year 2050 and 2100 respectively according to the present price of the commodity in the world market. Measures are to be taken by the government and farmers to find a way of mitigating the impacts of climate change on the future yield of the cocoa study area. This research should be extended to other cocoa producing areas in Nigeria.


2019 ◽  
Vol 3 (2) ◽  
pp. 131
Author(s):  
Wildan Wildan

This study aims to determine the amount of electric power needs each year in South Sulawesi until 2025. This estimation aims to determine the large power needs of South Sulawesi until 2025 by using the DKL 3.02 method used to estimate the need for electric power in the future based on data the use of energy and electric power, population growth, and economic growth in South Sulawesi Province, namely the GDP of South Sulawesi Province from previous years before the estimated year. The estimated results of the total electricity demand for all sectors from 2015 amounted to 2,452,130,065 VA and up to the year 2025 amounted to 5,246,811,618 VA with an average growth of 7.48%.


2020 ◽  
Vol 12 (20) ◽  
pp. 8373
Author(s):  
Matilda Cresso ◽  
Nicola Clerici ◽  
Adriana Sanchez ◽  
Fernando Jaramillo

Paramo ecosystems are tropical alpine grasslands, located above 3000 m.a.s.l. in the Andean mountain range. Their unique vegetation and soil characteristics, in combination with low temperature and abundant precipitation, create the most advantageous conditions for regulating and storing surface and groundwater. However, increasing temperatures and changing patterns of precipitation due to greenhouse-gas-emission climate change are threatening these fragile environments. In this study, we used regional observations and downscaled data for precipitation and minimum and maximum temperature during the reference period 1960–1990 and simulations for the future period 2041–2060 to study the present and future extents of paramo ecosystems in the Chingaza National Park (CNP), nearby Colombia’s capital city, Bogotá. The historical data were used for establishing upper and lower precipitation and temperature boundaries to determine the locations where paramo ecosystems currently thrive. Our results found that increasing mean monthly temperatures and changing precipitation will render 39 to 52% of the current paramo extent in CNP unsuitable for these ecosystems during the dry season, and 13 to 34% during the wet season. The greatest loss of paramo area will occur during the dry season and for the representative concentration pathway (RCP) scenario 8.5, when both temperature and precipitation boundaries are more prone to be exceeded. Although our initial estimates show the future impact on paramos and the water security of Bogotá due to climate change, complex internal and external interactions in paramo ecosystems make it essential to study other influencing climatic parameters (e.g., soil, topography, wind, etc.) apart from temperature and precipitation.


2021 ◽  
Author(s):  
Farhan Aziz ◽  
Nadeem Tariq ◽  
Akif Rahim ◽  
Ambreen Mahmood

&lt;p&gt;In recent years, extreme events and their severe damage have become more common around the world. It is widely known that atmospheric greenhouse gases have contributed to global warming. &lt;br&gt;A set of appropriate indicators describing the extremes of climate change can be used to study the extent of climate change. This study reveals the trends of temperature extreme indices on the spatial scale in the western part of Northwest Himalayas.&amp;#160;The study is conducted&amp;#160;at&amp;#160;13 climate stations lies&amp;#160;at&amp;#160;a different altitude of the study area.The Daily maximum and minimum temperature data during 2000--2018 of stations obtained from the Pakistan Meteorological Department (PMD) and Water and Power Development Authority (WAPDA). The 12 extreme temperature indices (FD, SU, TXx , TXn., TNx, TNn, TN10p , TN90p, TX10p , TX90p, CSDI, WSDI) recommended by ETCCDI (Expert Team on Climate Change Detection and Indices) are used to study the variabilities in temperature extremes. These indices are characterized based on amplitude, persistence, and frequency. The analysis is performed by using R package of extremes &amp;#8220;RClimDEX&amp;#8221;. The analysis shows the frequency of summer days (Su) and warm spells (WSDI) have increasing trends in the Southwest region, whereas the frequency of cold spells and frost days have decreasing trends observed in the Northern region of the study areas. The maximum and minimum values of daily maximum temperature (TXX, TXN) increase in the foothill area of the region and decreasing trends in the high elevation region. The day and night get cool in the Northwest region, whereas the days and nights are showing warmer trends in low elevation regions of the study area. Overall, the study concludes that the Northwestern parts have cool trends while South West and South eastern parts have warm trends during the early 21st century.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words:&lt;/strong&gt;&amp;#160; Temperature Extremes, Northwest Himalayas, Trends, R-Climdex, Climate Change&lt;/p&gt;


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Timothy King Avordeh ◽  
Samuel Gyamfi ◽  
Alex Akwasi Opoku

Purpose The purpose of this paper is to investigate the impact of temperature on residential electricity demand in the city of Greater Accra, Ghana. It is believed that the increasing trend of temperatures may significantly affect people’s lives and demand for electricity from the national grid. Given the recurrent electricity crisis in Ghana, this study will investigate both the current and future residential energy demands in the light of temperature fluctuations. This will inform future power generation using renewable energy resources mix to find a sustainable solution to the recurrent energy demand challenges in Ghana. This study will help the Government of Ghana to better understand the temperature dependence of residential energy demand, which in turn will help in developing behavioral modification programs aimed at reducing energy consumption. Monthly data for the temperature and residential electricity consumption for Greater Accra Region from January 2007 to December 2018 obtained from the Ghana Meteorological Service (GMS) and Ghana Grid Company (Gridco), respectively, are used for the analysis. Design/methodology/approach This study used monthly time series data from 2007 to 2018. Data on monthly electricity demand and temperature are obtained from the Ghana Grid Company and GMS. The theoretical framework for residential electricity consumption, the log-linear demand equation and time series regression approaches was used for this study. To demonstrate certain desirable properties and to produce good estimators in this study, an analysis technique of ordinary least squares measurement was also applied. Findings This study showed an impact on residential electricity requirements in the selected regions of Greater Accra owing to temperature change. The analysis suggests a substantial positive response to an increase in temperature demand for residential electricity and thus indicates a growth of the region’s demand for electricity in the future because of temperature changes. As this analysis projects, the growth in the electricity demand seems too small for concern, perhaps because of the incoherence of the mechanisms used to regulate the temperature by the residents. However, two points should be considered when drawing any conclusions even in the case of Greater Accra alone. First, the growth in the demand for electricity shown in the present study is the growth of demand due only to increasing temperatures that do not consider changes in all the other factors driving the growth of demand. The electricity demand will in the future increase beyond what is induced by temperature, due to increasing demand, population and mechanization and other socioeconomic factors. Second, power consumption understated genuine electricity demand, owing to the massive shedding of loads (Dumsor) which occurred in Ghana from 2012 to 2015 in the analysis period that also applies in the Greater Accra region. Given both of these factors, the growth in demand for electricity is set to increase in response to climate change, which draws on the authorities to prepare more critically on capacity building which loads balancing. The results also revealed that monthly total residential electricity consumption, particularly the monthly peak electricity consumption in the city of Accra is highly sensitive to temperature. Therefore, the rise in temperature under different climate change scenarios would have a high impact on residential electricity consumption. This study reveals that the monthly total residential electricity demand in Greater Accra will increase by up to 3.1%. Research limitations/implications The research data was largely restricted to only one region in Ghana because of the inconsistencies in the data from the other regions. The only climate variable use was temperature because it was proven in the literature that it was the most dominant variable that affects electricity demand, so it was not out of place to use only this variable. The research, however, can be extended to capture the entire regions of the country if sponsorship and accurate data can be obtained. Practical implications The government as the policy and law-making authority has to play the most influential role to ensure adaptation at all levels toward the impact of climate change for residential consumers. It is the main responsibility of the government to arrange enough supports to help residential consumers adapt to climate change and try to make consumers self-sufficient by modification of certain behaviors rather than supply dependent. Government bodies need to carefully define their climate adaptation supports and incentive programs to influence residential-level consumption practices and demand management. Here, energy policies and investments need to be more strategic. The most critical problem is to identify the appropriate adaptation policies that favor the most vulnerable sectors such as the residential sector. Social implications To evaluate both mitigation and adaptation policies, it is important to estimate the effect of climate change on energy usage around the world. Existing empirical figures, however, are concentrated in Western nations, especially the USA. To predict how electricity usage will shift in the city of Greater Accra, Ghana, the authors used regular household electricity consumption data. Originality/value The motivation for this paper and in particular the empirical analysis for Ghana is originality for the literature. This paper demonstrates an adequate understanding of the relevant literature in modern times.


2015 ◽  
Vol 43 (3) ◽  
Author(s):  
K.K. Jayasooryan ◽  
P.R. Satheesh ◽  
R. Krishnakumar ◽  
James Jacob

<span style="line-height: 107%; font-family: 'Times New Roman','serif'; font-size: 12pt; mso-bidi-language: HI; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: EN-GB; mso-fareast-language: EN-US;" lang="EN-GB">Climate change and occurrence of extreme temperature events were studied in Kottayam, a major rubber growing district in Kerala. Occurrence of extreme temperature events can affect the livelihood of rubber growers apart from the ecological impact. The present study was conducted by analysing the occurrence of extreme temperature events in the past 40 years (1970-2010) using the RClimDex package developed by the Expert Team on Climate Change Detection Monitoring and Indices (ETCCDMI), Canada. Temporal variations in trends of occurrence of extreme temperature events were tested with Mann-Kendall trend analysis. The 5-year diurnal temperature range (DTR, difference between monthly mean maximum and minimum temperatures) increased from 7.8 (during 1970-1974) to 9.2 0C (during 2006-2010). The monthly mean maximum temperature increased by 0.035 0C per year. Frequency of occurrence of hot days increased at a rate of 0.56 per cent per year and the highest temperature recorded in a month showed an increase of 0.038 0C per year. As observed, the increasing trends in the occurrence of extreme temperature events may eventually lead to the warming up of the region in future. The study indicates that the projected warming tendency in the traditional rubber growing regions of India may affect the rubber cultivation adversely.</span>


2012 ◽  
Vol 102 (3) ◽  
pp. 250-255 ◽  
Author(s):  
Matthew A Turner ◽  
Jeffrey S Rosenthal ◽  
Jian Chen ◽  
Chunyan Hao

We investigate the effect of climate change on population growth in 18th and 19th century Iceland. We find that annual temperature changes help determine the population growth rate in pre-industrial Iceland: a year 1 degree Celsius cooler than average drives down population growth rates by 1.14%. We also find that 18th and 19th century Icelanders adapt to prolonged changes in climate after 20 years. These adaptations reduce the short run effect of annual change in temperature by about 60%. Finally, a 1 degree Celsius sustained decrease in temperature decreases the steady state population by 10% to 26%.


Sign in / Sign up

Export Citation Format

Share Document