scholarly journals Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia

2020 ◽  
Vol 12 (20) ◽  
pp. 8373
Author(s):  
Matilda Cresso ◽  
Nicola Clerici ◽  
Adriana Sanchez ◽  
Fernando Jaramillo

Paramo ecosystems are tropical alpine grasslands, located above 3000 m.a.s.l. in the Andean mountain range. Their unique vegetation and soil characteristics, in combination with low temperature and abundant precipitation, create the most advantageous conditions for regulating and storing surface and groundwater. However, increasing temperatures and changing patterns of precipitation due to greenhouse-gas-emission climate change are threatening these fragile environments. In this study, we used regional observations and downscaled data for precipitation and minimum and maximum temperature during the reference period 1960–1990 and simulations for the future period 2041–2060 to study the present and future extents of paramo ecosystems in the Chingaza National Park (CNP), nearby Colombia’s capital city, Bogotá. The historical data were used for establishing upper and lower precipitation and temperature boundaries to determine the locations where paramo ecosystems currently thrive. Our results found that increasing mean monthly temperatures and changing precipitation will render 39 to 52% of the current paramo extent in CNP unsuitable for these ecosystems during the dry season, and 13 to 34% during the wet season. The greatest loss of paramo area will occur during the dry season and for the representative concentration pathway (RCP) scenario 8.5, when both temperature and precipitation boundaries are more prone to be exceeded. Although our initial estimates show the future impact on paramos and the water security of Bogotá due to climate change, complex internal and external interactions in paramo ecosystems make it essential to study other influencing climatic parameters (e.g., soil, topography, wind, etc.) apart from temperature and precipitation.

2020 ◽  
Vol 2 (1) ◽  
pp. 108-120
Author(s):  
Suraj Lamichhane ◽  
Keshav Basnet ◽  
Nirmal Prasad Baral ◽  
Tek Bahadur Katuwal ◽  
Upendra Subedi

Anthropogenic activities are the major drivers of climate change and the climatic variability is the major threat for the world development especially in Nepal. The Kathmandu Valley (KV) is the most urbanized capital city of Nepal that has sensed the climatic variation in terms of increase in temperature, precipitation, runoff, and flood for few decades. For the adaptation of climatic variability, historical and future climate change is depicted by the trend, seasonal, and yearly variation analysis using climate models based on observed data. Historically, minimum temperatures of the all seasons are in increasing and the seasonal average rate of precipitation in the KV watershed is declining. After analysis of the projected future climate using climate model (ACCESS-CSIRO-CCAM, CNRM-CM5 and CCSM4) with two representative concentration pathways (RCP) scenarios (i.e., RCP4.5 and RCP8.5), minimum and maximum temperature in the future (up to 2050) is increased by 0.66°C – 0.6°C in RCP 4.5 and 1.21°C –1.04°C in RCP8.5 scenario. The rise in temperature means the warmer day will be increased and the erratic behavior of the precipitation will be expected in the future and the basin is expected to be drier in dry season and wetter in wet season. The analysis provides the alternative information for the planner for better planning, management, and adaptation strategy.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 712
Author(s):  
Innocent Mbokodo ◽  
Mary-Jane Bopape ◽  
Hector Chikoore ◽  
Francois Engelbrecht ◽  
Nthaduleni Nethengwe

Weather and climate extremes, such as heat waves (HWs), have become more frequent due to climate change, resulting in negative environmental and socioeconomic impacts in many regions of the world. The high vulnerability of South African society to the impacts of warm extreme temperatures makes the study of the effect of climate change on future HWs necessary across the country. We investigated the projected effect of climate change on future of South Africa with a focus on HWs using an ensemble of regional climate model downscalings obtained from the Conformal Cubic Atmospheric Model (CCAM) for the periods 2010–2039, 2040–2069, and 2070–2099, with 1983–2012 as the historical baseline. Simulations were performed under the Representative Concentration Pathway (RCP) 4.5 (moderate greenhouse gas (GHG) concentration) and 8.5 (high GHG concentration) greenhouse gas emission scenarios. We found that the 30-year period average maximum temperatures may rise by up to 6 °C across much of the interior of South Africa by 2070–2099 with respect to 1983–2012, under a high GHG concentration. Simulated HW thresholds for all ensemble members were similar and spatially consistent with observed HW thresholds. Under a high GHG concentration, short lasting HWs (average of 3–4 days) along the coastal areas are expected to increase in frequency in the future climate, however the coasts will continue to experience HWs of relatively shorter duration compared to the interior regions. HWs lasting for shorter duration are expected to be more frequent when compared to HWs of longer durations (over two weeks). The north-western part of South Africa is expected to have the most drastic increase in HWs occurrences across the country. Whilst the central interior is not projected to experience pronounced increases in HW frequency, HWs across this region are expected to last longer under future climate change. Consistent patterns of change are projected for HWs under moderate GHG concentrations, but the changes are smaller in amplitude. Increases in HW frequency and duration across South Africa may have significant impacts on human health, economic activities, and livelihoods in vulnerable communities.


2014 ◽  
Vol 9 (4) ◽  
pp. 422-431 ◽  
Author(s):  
Emmanuel Tachie-Obeng ◽  
◽  
Bruce Hewitson ◽  
Edwin Akonno Gyasi ◽  
Mark Kofi Abekoe ◽  
...  

The possibility of future climate change in Ghana has received much attention due to repeated droughts and floods over the last decades. The savanna zone which is described as the food basket of Ghana is highly susceptible to climate change impact. Scenarios from 20-year time slices of the near future – 2046-2065 – and the far future – 2081-2100 – climate change meant to help guide policy remain a challenge. Empirical downscaling performed at the local-scale of Wa District in the savanna zone of Ghana under the IPCC A2 SRES emissions scenario showed evidence of probable climate change with mean annual temperatures expected to increase over an estimated range of 1.5°C to 2.3°C in the near future, with number of cool nights becoming less frequent, especially during the Harmattan1 period. The dry season is expected to be warmer than the wet season, with high inter-annual variations projected in both maximum (Tmax) and minimum (Tmin) temperatures. Given an average of 1 day of Tmax > 40°C per month in the control period of 1961-2000, the number of hot days is expected to increase to 12 by 2046-2065. An increase in total rainfall is projected with possible shifts in distribution toward the end of the year, with a slight increase in rainfall during the dry season and an increase of rainfall at the onset and toward the end of the wet season. However, a decrease in June rainfall is projected in the wet season. The objective of this paper is to improve the understanding of future climate as a guide to local level medium-term development plans of effective adaptation options for Wa district in the savanna zone of Ghana.


Author(s):  
Caroline M. Wainwright ◽  
Emily Black ◽  
Richard P. Allan

AbstractClimate change will result in more dry days and longer dry spells, however, the resulting impacts on crop growth depend on the timing of these longer dry spells in the annual cycle. Using an ensemble of Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6) simulations, and a range of emission scenarios, here we examine changes in wet and dry spell characteristics under future climate change across the extended tropics in wet and dry seasons separately. Delays in the wet seasons by up to two weeks are projected by 2070-2099 across South America, Southern Africa, West Africa and the Sahel. An increase in both mean and maximum dry spell length during the dry season is found across Central and South America, Southern Africa and Australia, with a reduction in dry season rainfall also found in these regions. Mean dry season dry spell lengths increase by 5-10 days over north-east South America and south-west Africa. However, changes in dry spell length during the wet season are much smaller across the tropics with limited model consensus. Mean dry season maximum temperature increases are found to be up to 3°C higher than mean wet season maximum temperature increases over South America, Southern Africa and parts of Asia. Longer dry spells, fewer wet days, and higher temperatures during the dry season may lead to increasing dry season aridity, and have detrimental consequences for perennial crops.


2021 ◽  
pp. 121-142
Author(s):  
Sridhara Nayak ◽  
Tetsuya Takemi

AbstractThis study explores a comprehensive assessment of future climate change in terms of the climatologies, distribution patterns, annual cycles, and frequency distributions of temperature and precipitation over India by analyzing 190 mega-ensemble experimental results. The results indicate that the annual mean surface temperatures over Indian regions are typically 25 ℃ or higher in the present climate (1951–2010) and are expected to increase by 3–5 ℃ in the future climate (2051–2110). Some desert regions in the west and tropical humid climate types in the central and south regions of the country show possible temperature increases of 4–5 ℃, while the temperatures over the subtropical humid climates in the north and east regions of the country show increases of 3–4 ℃. The precipitation amounts over the arid and semiarid climate types in the western region and over some tropical rainforest climate zones in the southwest region show increases of 0.5 mm d−1 in the future climate, and the precipitation amounts over the temperate, rainy climate types in the northeast region show increases of more than 1 mm d−1. This study also discusses future changes in various climatic variables, including vertical velocity, air temperature, specific humidity, cloud cover, and relative humidity.


2020 ◽  
Author(s):  
Nicola Mathura ◽  
Kegan Farrick

<p>Climate change and unsustainable land use practices such as quarrying have the potential to negatively impact the hydrology and water resource availability in catchments. Throughout the Caribbean, hillside quarrying has become a common practice. While these activities remove large sections of the critical zone, very little work has been done on how hillside quarrying impacts storm response and catchment water storage.  The study is particularly important given the expected changes to rainfall patterns in the Caribbean under future climate change. We hypothesised that the removal of the critical zone during quarrying will increase the magnitude of streamflow response to storm events due to its close proximity to the river, while also reducing the overall storage of the watershed. This study utilized a hydrometric and geochemical approach with direct measurements of rainfall and streamflow, and bi-weekly water sample collections for geochemistry and <sup>18</sup>O and <sup>2</sup>H stable isotopes between the 3.6 km<sup>2</sup> Acono (forested) and the adjacent 3.6 km<sup>2</sup> Don Juan (quarried) watersheds, located in Trinidad and Tobago. A total of 1207 mm of rainfall occurred, with 87.3% falling from August to November (wet season) and 12.7% from December to March (dry season). The δ<sup> 18</sup>O in rainfall ranged from -7.7 to 0.3 ‰ across both seasons with an average δ<sup>18</sup>O of -3.5±1.8‰ during the wet season and 0.1±0.5‰ in the dry season. During the dry season the mean δ<sup> 18</sup>O of stream water showed a difference between the forested (-2.8±0.3‰) and quarried (-3.1±0.3‰) catchments whereas there was little differences in δ<sup>18</sup>O in the forested catchment (-3.3±0.3 ‰) and quarried catchment–(-3.2±0.27‰) in the wet season. Our stream δ<sup>18</sup>O dry season results suggests that different sources of water or anthropogenic influences such as water from settling ponds in the quarry could have impacted the δ<sup>18</sup>O of the quarried stream as we expected the forested catchment to be more stable. Sample collection at these sites is ongoing and additional parameters such as soil water isotopes and rainfall, soil and stream ion chemistry are expected to improve our understanding of the translation from rainfall to streamflow. This research will allow us to gain a better insight of the current hydrological processes within this catchment and aid in the long term adaptive planning for factors such as climate change and further land use change.</p><p> </p>


2020 ◽  
Vol 58 (3A) ◽  
pp. 195
Author(s):  
Lan Huong Nguyen ◽  
Viet Nga Thi Tran

Every day, up to 750,000 cubic meters of wastewater in Hanoi metropolitan areas is discharged directly into rivers and lake, of which only 10% is treated to the Vietnamese standards. According to the water drainage development master plan for the capital city of Hanoi until 2030, the government aim at dealing with flooding and improve environmental sanitation for local residents. With respect to the baseline and Master plan implementation scenarios, this study evaluates the future water quality of urban rivers in Hanoi under the effect of urbanization and climate change using Water Evaluation And Planning tool (WEAP) and take the Cau Bay catchment as the case study. The result shows that, without implementation of wastewater treatment plant, the water quality of Cau Bay River will be worse with the DO in dry season is 0.2-1.2 mg/l and BOD is 52.0-55.0 mg/l. With the implementation of Master plan, the level of DO and BOD would be 7.1-7.3 mg/l and 7.0-13.8 mg/l respectively in the dry season whereas the values are 3.7 mgO/l and 36.1-41.8 mg/l in the wet season. The degradation of wastewater during the wet season is results from the combine- overflow sewage system as designed in the master plan.


2022 ◽  
Vol 4 ◽  
Author(s):  
Hui Wang ◽  
Yangcui Ning ◽  
Chunlan Liu ◽  
Peng Xu ◽  
Wentao Zhang

We conducted dendroclimatological study on three dominant conifer tree species, Pinus koraiensis, Larix olgensis, and Picea jezoensis, in northeastern China for a better understanding of climate change impacts on temperate forest growth, by discussing the radial growth relationships of these tree species and projecting their radial growth trends under the future climate change scenarios. Based on the tree-ring samples collected from the upper altitude of Changbai Mountain, ring width chronologies were built to examine the growth relationships, and regression equations were established to project the future growth of the species under future climate change projected by the five general circulation models (GCMs) and four representative concentration pathway (RCP) scenarios. Although both temperature and precipitation showed varying degrees of relationships with growth of these three tree species, the limiting climate factors were species-specific. The tree-ring growth of P. koraiensis was limited by the summer temperature and precipitation at the end of growth, namely, significant positive correlations with the current July temperature and the previous September precipitation. Growth of L. olgensis was limited by the temperature before growing season, for its chronology was negatively correlated with the current February and previous December temperature (p < 0.05). The climatic conditions before and after growing season seemed to be the limiting factors of P. jezoensis growth, which was negatively correlated with the current February to April temperature and the current September temperature (p < 0.05), and positively correlated with the current August precipitation (p < 0.05). Under the gradual increasing of temperature predicted by the five GCMs and four RCP scenarios, the radial growth of P. Koraiensis will relatively increase, while that of L. olgensis and P. jezoensis will relatively decrease comparing to the base-line period (1981–2010). The specific growth–climate relationships and the future growth trends are species dependent. P. Koraiensis was the more suitable tree species for the forestation to maintain the sustainable forest in Changbai Mountain.


Author(s):  
Shan He ◽  
Tianling Qin ◽  
Fang Liu ◽  
Shanshan Liu ◽  
Biqiong Dong ◽  
...  

Slope ecological restoration and climate change are important factors affecting the hydrological processes of the Huangshui River Basin in Qinghai province, China. How to quantitatively identify the impact of slope ecological restoration on runoff and whether slope ecological restoration can mitigate the impact of future climate change on runoff are both very important. In this paper, the Huangshui River above the center of Minhe county was taken as the research area, and the Pinus tabulaeformis and shrubs were taken as the main forest land types of slope ecological restoration. First, based on the law of forest land variation, the construction scales of slope ecological restoration in different periods were identified. The influence of slope ecological restoration on runoff was then quantitatively evaluated by using a distributed hydrological model. Second, the future climate scenarios of five general circulation models (GCMs) under three representative concentration pathways (RCPs) (i.e., RCP2.6, RCP4.5, and RCP8.5) from 2021 to 2050 were selected and modified by model integration. Combined with the slope ecological restoration scenarios, the influence of slope ecological restoration on runoff under future climate scenarios was explored. The results showed that the effect of slope ecological restoration was significant. Compared with 1980, the area of slope ecological restoration increased by 24% in 2017. Under the present climate conditions (1960–2017), different periods of slope ecological restoration have an effect on the process of runoff in the wet season (June, July, August, and September) and dry season (January, February, March, and December), which eliminates the maximum, replenishes the minimum, and reduces the variability of runoff processes in the watershed. Under the future climate scenario (2021–50), slope ecological restoration will reduce runoff. On the other hand, climate change will increase runoff, and the combination of the two effects will have a certain offsetting effect. On the whole, comparing the influence of slope ecological restoration on the runoff process with that of climate change in different seasons, due to the main influence of slope ecological restoration, the runoff decreased by about 55% in the temperate season (April, May, October, and November), and increased by about 50% in the dry season or wet season due to the main influence of future climate scenarios.


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Sign in / Sign up

Export Citation Format

Share Document