scholarly journals Sustainable Technology on Aircraft Design: A Review

2021 ◽  
Vol 889 (1) ◽  
pp. 012068
Author(s):  
Aishwarya Dhara ◽  
Jeyan Muruga Lal

Abstract Next-generation air transportation is a key to influence the environment, safety, and the economy. Several programs strive to create emerging innovation towards sustainability, system integrity, and alternative fuels to guarantee a reduction of its environmental effect as greenhouse gas. Nowadays, the aerospace industry is looking forward to aviation sustainable developments across the globe. Few initiatives through a novel configuration of aircraft is established like Blended Wing Body, Flying V aircraft, Box wing Aircraft, and Double bubble Aircraft to enhance the cargo and passenger volume occupancy and cut-off the fuel burn percent. With the use of disruptive technologies, researchers are progressing the revolutionary airframe for transportation. A systematic overview and comprehensive survey of passenger-based aircraft are investigated. The objective study is to examine fuel burn and its impact on the environment by types of aircraft. In-depth literature review studies on four pillar strategies used to design an efficient airplane. In addition, this paper also serves on advancement in evolutionary technologies used in jet transport aircraft. Reflecting the benefits and challenges of different aircraft designs technologies were also highlighted. This paper highlights the future implications and managerial insights for future aircraft designers.

2007 ◽  
Vol 111 (1123) ◽  
pp. 589-592 ◽  
Author(s):  
R. K. Nangia

The aircraft industry, as a whole, is striving to limit its impact on the environment. Improved engine design and operation may offer a reduction in emissions of a few percent. More efficient air traffic control (ATC) may offer a limited reduction in overall fuel burn. Improvements in aerodynamic design and materials available (e.g. on A350XWB, B787) might achieve a few percent increases in efficiencies. The use of alternative fuels is some way off. The ACARE objectives present a stiff challenge. Our recent studies have shown that air-to-air-refuelling (AAR), well established in military circles, introduced to civil aircraft operations would provide fuel savings of the order of 30% – 40%. AAR will allow smaller (3,000nm range), more efficient (greener) aircraft, operating from shorter runways, to fulfil long-range route requirements. In addition, the ‘safety-net’ afforded by the availability of AAR will enable a host of hitherto borderline technologies to be accepted and utilised in future aircraft designs. Laminar flow will provide fuel savings and increased efficiency in its own right provided it is enabled within a civil AAR environment. Similarly, supersonic transport becomes an acceptable economic option.


2017 ◽  
Vol 12 ◽  
pp. 104
Author(s):  
Petra Skolilova

The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs) are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.


2020 ◽  
Vol 125 (1284) ◽  
pp. 296-340
Author(s):  
D.I.A. Poll ◽  
U. Schumann

ABSTRACTA simple yet physically comprehensive and accurate method for the estimation of the cruise fuel burn rate of turbofan powered transport aircraft operating in a general atmosphere was developed in part 1. The method is built on previously published work showing that suitable normalisation reduces the governing relations to a set of near-universal curves. However, to apply the method to a specific aircraft, values must be assigned to six independent parameters and the more accurate these values are the more accurate the estimates will be. Unfortunately, some of these parameters rarely appear in the public domain. Consequently, a scheme for their estimation is developed herein using basic aerodynamic theory and data correlations. In addition, the basic method is extended to provide estimates for cruise lift-to-drag ratio, engine thrust and engine overall efficiency. This step requires the introduction of two more independent parameters, increasing the total number from six to eight. An error estimate and sensitivity analysis indicates that, in the aircraft’s normal operating range and using the present results, estimates of fuel burn rate are expected to be in error by no more than 5% in the majority of cases. Initial estimates of the characteristic parameters have been generated for 53 aircraft types and engine combinations and a table is provided.


2021 ◽  
Vol 2 (6) ◽  
pp. 1-4
Author(s):  
Ponyaev L

The new shortly and low cost Regular Airlines Cargo & PAX directions via Arctic Cross Polar Air Transportation Routes of the future High Ecology Efficiency and Safety ICAO Strategy will be base on the more perspective for Trans Continental Airlines Operations by IATA International Law Regulations and World Climate Protect Law. Using the more shortly directions of Trans Polar Flight for Long-Haul Aircrafts (LHA) Routes by leader Airlines Sky Teams with Aeroflot are request to find new Geometrical Layout of Aircraft Design Industrial Projections & Products Lines. The increase in the dimension of LHA came into conflict with modern Airport Infrastructure and led to the search for alternative Arctic Planes & Dirigibles Options for constructively layout circuit solutions with protection of minimum weight and drag issues in order to deal with this contradiction. Computer Digital Aircraft Structural-Parametric Analysis of the influence of Aviation Infrastructure Constraints in the basing of LHA on the choice of alternative Design Options for Lift Fuselage Body or Flying-V layout was carried out.


Author(s):  
Lori J. Brown

Today, wireless technology forms the communications backbone of many industries—including aviation, transportation, government, and defense. The era of the Next Generation Air Transportation System, (NextGen), is upon us. The Federal Aviation Administration, in collaboration with industry, is deploying NextGen technology on the ground, in the air, at air traffic control facilities and in the cockpit. These new technologies in aviation represent a global, transformative change. NextGen blends new and existing technologies, including satellite navigation and digital communications, to improve safety outcomes, increase on time performance, offer reduced fuel burn and positively impact aviation's adverse environmental concerns. Significant growth in technologies like global connectivity and cloud computing over the last few years has begun to unlock potential for seamless wireless communications, improved training processes, real-time weather and navigational displays. While technology has spurred improvements in aviation, basic hands-free wireless communication between flight attendants and pilots is still viewed as inadequate by industry professionals.


Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Can Alkaya ◽  
Ashish Alex Sam ◽  
Apostolos Pesyridis

The conceptual aircraft design and its integration with a combined cycle engine for hypersonic cruise at Mach 8 is documented in this paper. The paper describes the process taken to develop a hypersonic aircraft from a conceptual approach. The discussion also includes the design and CFD analysis of the integrated combined cycle engine. A final conceptual hypersonic transport aircraft with an integrated combined cycle engine was achieved through this study. According to the analysis carried out, the aircraft is able to take-off and land at the airports it is intended to be used and will be able to generate enough thrust to sustain hypersonic cruise at an altitude of 30 km.


2012 ◽  
Vol 225 ◽  
pp. 397-402 ◽  
Author(s):  
Erwin Sulaeman

To maintain flight safety, all transport aircraft designs should satisfy airworthiness standard regulation. One fundamental issue of the aircraft design that relates directly to flight safety as well as commercial aspect of the aircraft is on the evaluation of the maximum speed within the designated flight envelope. In the present work, a study is performed to evaluate the negative altitude requirement related to aeroelastic instability analysis as one requirement that should be fulfilled to design the maximum speed. An analytical derivation to obtain the negative altitude is performed based on the airworthiness requirement that a transport airplane must be designed to be free from aeroelastic instability within the flight envelope encompassed by the dive speed or dive Mach number versus altitude envelope enlarged at all points by an increase of 15% in equivalent airspeed at both constant Mach number and constant altitude. To take into account variation in atmospheric condition as function of altitude, the international standard regulation is used as referenced. The analysis result shows that a single negative altitude can be obtained using these criteria regardless of the dive speed or dive Mach number. A further discussion on the application of the negative altitude concept to UAV (Unmanned Aerial Vehicle), in relation to UAV Standard Airworthiness Requirement STANAG 4671, is presented.


Sign in / Sign up

Export Citation Format

Share Document