scholarly journals Comparison of forecast estimates of seabed subsidence of the Yuzhno-Kirinskoye field

2021 ◽  
Vol 946 (1) ◽  
pp. 012019
Author(s):  
V S Zhukov ◽  
D K Kuzmin ◽  
Yu O Kuzmin ◽  
I V Pleshkov

Abstract The geodynamic consequences of the field development process include the subsidence of the earth’s surface. Monitoring of deformations in offshore fields is difficult and it is necessary to evaluate them by various methods. It is important to investigate how much the calculated amplitude of the seabed subsidence is reduced by taking into account changes in the porosity and compressibility of the pore space with a decrease in reservoir pressure. The analysis of changes in the petrophysical parameters of the reservoirs of the Daginsky horizon during the projected development of the Yuzhno-Kirinskoye hydrocarbon field for depletion and a decrease in formation pressure by 10 MPa showed that the porosity decrease will be 0.038 absolute percent, the compressibility of the pore space will decrease by 0,08 10-3 1/MPa. With the help of the Petrel software, changes in the thickness of the productive layer from 80 to 120 cm were obtained, which can be taken as an estimate of the seabed subsidence in the area of the field. The application of the genetic model of the deformable formation by Kuzmin Yu showed that the maximum amplitude of the seabed subsidence to be 101 cm. Comparison of these estimates of the seabed subsidence indicates their proximity. Taking into account the dynamics of tectonophysical and petrophysical characteristics due to the long-term development of hydrocarbon deposits significantly changes the intensity of the deformation state of the rock mass and the earth’s surface above the field.

Author(s):  
Juan Carlos Moreno-Brid ◽  
Esteban Pérez Caldentey ◽  
Laura Valdez

NAFINSA was essential to Mexico’s development process. It served as the financial agent of the Federal Government and provided preferential access to long-term finance favouring selected business interests and groups. With the Washington Consensus, its tasks were reduced to correcting for market failures, becoming a complement to commercial banks, and focusing on attending the market segments falling outside the scope of commercial bank activity (notably SMEs). Although it appears as a successful story of institutional transformation, on closer inspection, NAFINSA has not been able to overcome key obstacles and its success in alleviating credit restrictions is very limited. NAFINSA must recover some of its functions, prerogatives, and responsibilities as a policy bank to become relevant in strengthening financial intermediation for capital formation.


2021 ◽  
pp. 23-31
Author(s):  
Y. I. Gladysheva

Nadym-Pursk oil and gas region has been one of the main areas for the production of hydrocarbon raw materials since the sixties of the last century. A significant part of hydrocarbon deposits is at the final stage of field development. An increase in gas and oil production is possible subject to the discovery of new fields. The search for new hydrocarbon deposits must be carried out taking into account an integrated research approach, primarily the interpretation of seismic exploration, the creation of geological models of sedimentary basins, the study of geodynamic processes and thermobaric parameters. Statistical analysis of geological parameters of oil and gas bearing complexes revealed that the most promising direction of search are active zones — blocks with the maximum sedimentary section and accumulation rate. In these zones abnormal reservoir pressures and high reservoir temperatures are recorded. The Cretaceous oil and gas megacomplex is one of the main prospecting targets. New discovery of hydrocarbon deposits are associated with both additional exploration of old fields and the search for new prospects on the shelf of the north. An important area of geological exploration is the productive layer of the Lower-Berezovskaya subformation, in which gas deposits were discovered in unconventional reservoirs.


2020 ◽  
pp. 57-60
Author(s):  
K.I. Mustafaev ◽  
◽  
◽  

The production of residual oil reserves in the fields being in a long-term exploitation is of current interest. The extraction of residual oil in such fields was cost-effective and simple technological process and is always hot topic for researchers. Oil wells become flooded in the course of time. The appearance of water shows in production wells in the field development and operation is basically negative occurrence and requires severe control. Namely for this reason, the studies were oriented, foremost, to the prevention of water shows in production well and the elimination of its complications as well. The paper discusses the ways of reflux efficiency increase during long-term exploitation and at the final stages of development to prevent the irrigation and water use in production wells.


2016 ◽  
Vol 30 (1) ◽  
pp. 109-118
Author(s):  
Laurita Marconi SCHIAVON ◽  
Daniela Bento SOARES

Abstract Sports development involves important aspects that collaborate towards the achievement of a high level sports performance. Parental support is one such fact to be considered in Long Term Athlete Development (LTAD), capable of benefiting or harming athletes if not adequately administered. This study registers and discusses the importance of parental support in female Artistic Gymnastics, from the perspective of Brazilian gymnasts who have participated in the Olympic Games. The method used was Oral History with the technique known as oral testimony. The participants of the study were the ten Brazilian gymnasts who represented Brazil in the Olympic Games from when the country first participated in this championship, in 1980, up to the best Brazilian classification in Athens (2004), totaling ten gymnasts (a sample comprising 100% or the research universe). Testimony analysis was conducted through crossanalysis. The study shows unanimity among the gymnasts in regards to the importance of parental support in the sports development process. In addition to reinforcing the results found in the literature, the testimonies provide details of the relationships between the gymnasts and their families for deeper reflections around the subject, a distinguishing feature of studies with oral testimonies.


Author(s):  
A. P. S. Selvadurai ◽  
A. P. Suvorov

The paper investigates the development of instability in an internally pressurized annulus of a poro-hyperelastic material. The theory of poro-hyperelasticity is proposed as an approach for modelling the mechanical behaviour of highly deformable elastic materials, the pore space of which is saturated with a fluid. The consideration of coupling between the mechanical response of the hyperelastic porous skeleton and the pore fluid is important when applying the developments to soft tissues encountered in biomechanical applications. The paper examines the development of an instability in a poro-hyperelastic annulus subjected to internal pressure. Using a computational approach, numerical solutions are obtained for the internal pressures that promote either short-term or long-term instability in a poro-hyperelastic annulus and a poro-hyperelastic shell. In addition, time-dependent effects of stability loss are examined. The analytical solutions are used to benchmark the accuracy of the computational approach.


2014 ◽  
Vol 915-916 ◽  
pp. 1128-1131
Author(s):  
Yu Sheng Ding ◽  
Shuang Yan Chen ◽  
Jun Xie ◽  
Ju Biao Zhou ◽  
Li Yao Li

Inefficient reserves in fault block belongs to low permeability thin interbed, thus water flooding development process has exposed many contradictions which are serious heterogeneity, large difference of suction of interlayer. Entering the water injection development, the injected water which rapidly advance along the high permeability channel causes water channeling and water flooding, which intenses development contradictions between layers. The reservoir numerical simulation technology on computer can reappear the movement of water and gas in the underground reservoir development process and describes the underground remaining oil distribution of inefficient reserves in complex fault block, which summarizes the remaining oil distribution rule of the water flooding development for complex fault block of inefficient reserves and provides basis for the establishment of oil field development adjustment scheme.


2021 ◽  
Author(s):  
Nasser AlAskari ◽  
Muhamad Zaki ◽  
Ahmed AlJanahi ◽  
Hamed AlGhadhban ◽  
Eyad Ali ◽  
...  

Abstract Objectives/Scope: The Magwa and Ostracod formations are tight and highly fractured carbonate reservoirs. At shallow depth (1600-1800 ft) and low stresses, wide, long and conductive propped fracture has proven to be the most effective stimulation technique for production enhancement. However, optimizing flow of the medium viscosity oil (17-27 API gravity) was a challenge both at initial phase (fracture fluid recovery and proppant flowback risks) and long-term (depletion, increasing water cut, emulsion tendency). Methods, Procedures, Process: Historically, due to shallow depth, low reservoir pressure and low GOR, the optimum artificial lift method for the wells completed in the Magwa and Ostracod reservoirs was always sucker-rod pumps (SRP) with more than 300 wells completed to date. In 2019 a pilot re-development project was initiated to unlock reservoir potential and enhance productivity by introducing a massive high-volume propped fracturing stimulation that increased production rates by several folds. Consequently, initial production rates and drawdown had to be modelled to ensure proppant pack stability. Long-term artificial lift (AL) design was optimized using developed workflow based on reservoir modelling, available post-fracturing well testing data and production history match. Results, Observations, Conclusions: Initial production results, in 16 vertical and slanted wells, were encouraging with an average 90 days production 4 to 8 times higher than of existing wells. However, the initial high gas volume and pressure is not favourable for SRP. In order to manage this, flexible AL approach was taken. Gas lift was preferred in the beginning and once the production falls below pre-defined PI and GOR, a conversion to SRP was done. Gas lift proved advantageous in handling solids such as residual proppant and in making sure that the well is free of solids before installing the pump. Continuous gas lift regime adjustments were taken to maximize drawdown. Periodical FBHP surveys were performed to calibrate the single well model for nodal analysis. However, there limitations were present in terms of maximizing the drawdown on one side and the high potential of forming GL induced emulsion on the other side. Horizontal wells with multi-stage fracturing are common field development method for such tight formations. However, in geological conditions of shallow and low temperature environment it represented a significant challenge to achieve fast and sufficient fracture fluid recovery by volume from multiple fractures without deteriorating the proppant pack stability. This paper outlines local solutions and a tailored workflow that were taken to optimize the production performance and give the brown field a second chance. Novel/Additive Information: Overcoming the different production challenges through AL is one of the keys to unlock the reservoir potential for full field re-development. The Magwa and Ostracod formations are unique for stimulation applications for shallow depth and range of reservoirs and fracture related uncertainties. An agile and flexible approach to AL allowed achieving the full technical potential of the wells and converted the project to a field development phase. The lessons learnt and resulting workflow demonstrate significant value in growing AL projects in tight and shallow formations globally.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
P. S. Ringrose ◽  
T. A. Meckel

AbstractMost studies on CO2 emissions reduction strategies that address the ‘two-degree scenario’ (2DS) recognize a significant role for CCS. For CCS to be effective, it must be deployed globally on both existing and emerging energy systems. For nations with large-scale emissions, offshore geologic CO2 storage provides an attractive and efficient long-term strategy. While some nations are already developing CCS projects using offshore CO2 storage resources, most geographic regions have yet to begin. This paper demonstrates the geologic significance of global continental margins for providing broadly-equitable, geographically-relevant, and high-quality CO2 storage resources. We then use principles of pore-space utilization and subsurface pressure constraints together with analogs of historic industry well deployment rates to demonstrate how the required storage capacity can be developed as a function of time and technical maturity to enable the global deployment of offshore storage for facilitating 2DS. Our analysis indicates that 10–14 thousand CO2 injection wells will be needed globally by 2050 to achieve this goal.


Sign in / Sign up

Export Citation Format

Share Document