scholarly journals Study on heat treatment and coating of copper screw female in friction pair of rock drill

2021 ◽  
Vol 1138 (1) ◽  
pp. 012044
Author(s):  
Y Y Wang ◽  
M Zhao ◽  
X L Zhang
Author(s):  
Валерий Петровский ◽  
Valeriy Petrovskiy ◽  
Анатолий Рубан ◽  
Anatoliy Ruban

The paper is focused on the problem of the service life of the dredger chain, which largely depends on the efficiency and reliability of the hinge joint, when a mineral abrasive gets into the structural gap resulting in rapid wear of the joint under high dynamic loads. There has been developed a science-based technology of repairing parts of the assembly, without reducing the resource, from cheap and accessible (non-deficient) materials, taking into account modern technical and economic requirements, on samples. Wear resistance of samples of friction pairs has been defined in terms of a chain operating model. The research method is based on comparing the wear rate of samples in a pair made of steel 110Mn13 (sleeve - pin), 110Mn13 and 38CrNi3M (sleeve - pin), according to the standard technologies and taken as a reference, with pairs made of steel 110Mn13, C45K, facing with wire SV08A, electrodes E50A – UONI 13/55 and E – 190Cr5Si7 – LEZ – T – 590 – NG after heat treatment, chemical and heat treatment, surface plastic deformation. Samples were tested in the water-abrasive environment with a load of 6615 N (675 kgf). The wear resistance parameters were determined as following: 1) reference pairs of steel 110Mn13 (bushing-pin) and 110Mn13 (bushing), 38CrNi3Mo (pin); 2) pairs of steel 110Mn13 (bushing) and facing with wire SV08A (pin); 3) pairs of steel 110Mn13 (bushing) and cladding with electrodes E–190Cr5Si7–LEZ –T–590– NG (pin); 4) pairs of steel C45K (bushing) and cladding with E –190Cr5Si7 – LEZ – T – 590 – NG electrodes (pin); 5) pairs of steel C45K (bushing) and clad-ding with E50A – UONI 13/55 electrodes (pin). A graph of dependence of the bushing and pin wear on the relations of initial hardness and structures of friction pair has been built. It is recom-mended to restore the pin with wear-resistant electrodes E – 190Cr5Si7 – LEZ – T – 590 – NG paired with 110Mn13 steel bushing with surface plastic deformation. The wear resistance of a pair, with a different combination of structures, does not depend on the ratio of hardness of Hsl / Hfin. The materials of the pair worn within the reference samples can be recommended for the operational tests.


2015 ◽  
Vol 817 ◽  
pp. 493-497 ◽  
Author(s):  
Qin Shi ◽  
Wan Chang Sun ◽  
Jun Gao ◽  
Ying Wang ◽  
Miao Miao Tian

Ni-P-CNT nanocomposite coating was successfully co-deposited by electroless plating and the heat treatment was carried out at 200°C, 400°C, 600°C in nitrogen atmosphere respectively for a holding period of 1 h. The effects of heat treatment on the microstructure and mechanical properties of Ni-P-CNT composite coating were investigated. The results indicate that the heat treatment at 400°C can greatly improve the hardness and wear resistance of the composite coating. The reason is that Ni3P hard phase is greatly precipitated after the heat treatment, which played a strengthening effect. On the other hand, the precipitated Ni, Ni3P crystalline phases in the coating result in an increase of the amount of grain boundary. The increased amount of grain boundary broke the spread of shear force during friction process, and reduced the wear loss caused by friction pair. Compared with as-deposited coating, the coatings after heat treatment possess higher microhardness and wear resistance.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3171
Author(s):  
Shaolong Li ◽  
Yusi Che ◽  
Jianxun Song ◽  
Chenyao Li ◽  
Yongchun Shu ◽  
...  

1Cr13MoS is a kind of material with excellent corrosion resistance and good mechanical properties. Meanwhile, it also has good self-lubricating properties due to the presence of molybdenum disulfide phase inside the material and can be used as friction pair material in the pump. In this paper, the hardness, microstructure, distribution of the self-lubricating phase, friction and wear properties of 1Cr13MoS after heat treatment were studied. After quenching at 1000 °C and tempering at 520 °C, the hardness of 1Cr13MoS prepared by pyrometallurgy is higher than that of HB 350. The tempering sorbite structure is evenly distributed, and the self-lubricating phase MoS2 is discretely distributed on the substrate with the average size is about 6 μm, which leads to good friction and wear properties. It is worth noting that the 1Cr13MoS is actually operated as friction pair material on the water pump and has a significant wear improvement effect compared to the conventional 12% chrome steel series.


2008 ◽  
Vol 44-46 ◽  
pp. 233-238
Author(s):  
Chang Gen Bu

The life of tri-cone bits will directly affect the economic and technical drilling target. In order to control and evaluate bit’s life, the paper builds up the calculating mathematical model, which is suitable for determination of tri-cone bit’s life, to rationally design the radial clearance of non standard bearings. Effect of the radial clearance on the life of roller bearing was systematically deduced. The larger the radial clearance is; the higher the contact stress is; and the shorter the roller bearing life is. It follows from the model that the key factor of the radial clearance should be taken into consideration besides structure data and anti-friction pair’s heat treatment of roller bearing in order to decrease the contact stress of anti-friction pair and prolong the bit’s life.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
E. Bischoff ◽  
O. Sbaizero

Fiber or whisker reinforced ceramics show improved toughness and strength. Bridging by intact fibers in the crack wake and fiber pull-out after failure contribute to the additional toughness. These processes are strongly influenced by the sliding and debonding resistance of the interfacial region. The present study examines the interface in a laminated 0/90 composite consisting of SiC (Nicalon) fibers in a lithium-aluminum-silicate (LAS) glass-ceramic matrix. The material shows systematic changes in sliding resistance upon heat treatment.As-processed samples were annealed in air at 800 °C for 2, 4, 8, 16 and 100 h, and for comparison, in helium at 800 °C for 4 h. TEM specimen preparation of as processed and annealed material was performed with special care by cutting along directions having the fibers normal and parallel to the section plane, ultrasonic drilling, dimpling to 100 pm and final ionthinning. The specimen were lightly coated with Carbon and examined in an analytical TEM operated at 200 kV.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Author(s):  
R. Padmanabhan ◽  
W. E. Wood

Intermediate high temperature tempering prior to subsequent reaustenitization has been shown to double the plane strain fracture toughness as compared to conventionally heat treated UHSLA steels, at similar yield strength levels. The precipitation (during tempering) of metal carbides and their subsequent partial redissolution and refinement (during reaustenitization), in addition to the reduction in the prior austenite grain size during the cycling operation have all been suggested to contribute to the observed improvement in the mechanical properties. In this investigation, 300M steel was initially austenitized at 1143°K and then subjected to intermediate tempering at 923°K for 1 hr. before reaustenitizing at 1123°K for a short time and final tempering at 583°K. The changes in the microstructure responsible for the improvement in the properties have been studied and compared with conventionally heat treated steel. Fig. 1 shows interlath films of retained austenite produced during conventionally heat treatment.


Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


Sign in / Sign up

Export Citation Format

Share Document