scholarly journals Modeling and analysis of motion with wheel slip of the mobile platform with four wheel drive

2021 ◽  
Vol 1199 (1) ◽  
pp. 012054
Author(s):  
A Jaskot ◽  
B Posiadała

Abstract The problem of motion with wheel slip of the four wheeled mobile platform has been discussed in this work. Considering the model of dynamics, the formulation of the initial problem of the platform motion and the numerical algorithm for solving this problem has been presented. The Runge-Kutta 4th order method has been used to integrate the equations of motion. Possible cases of motion of the prototype of the mobile platform with four drive modules have been considered. Taking into account the variable values of the active forces caused by the drive torque and changes in the position of the wheels during the platform motion, as well as the resistant forces opposing the active forces at the contact points of the wheels with the ground, the platform motion simulation results have been obtained. Different wheel settings, with controlling the active forces and directions of their settings while driving have been implemented to the model. The results of motion simulations and their analysis have been included. The results presented in the paper show a significant influence of wheel slip on the parameters of the motion of the mobile platform. The computational model presented in the paper enables a good representation of the platform motion parameters, which has been confirmed by comparing the results of simulation tests with the results of experimental tests of motion in relation to a construction solution of the platform other than described in the paper. Further development of the computational model is planned, mainly in order to include the deformability of the wheel suspension systems in the dynamic model of the platform, which will allow for the implementation of wider studies of the motion of such objects, including, for example, in the case of wheels passing through obstacles.

2014 ◽  
Vol 971-973 ◽  
pp. 454-457
Author(s):  
Gang He ◽  
Li Qiang Jin

Based on the independent design front wheel drive vehicle traction control system (TCS), we finished the two kinds of working condition winter low adhesion real vehicle road test, including homogenous pavement and separate pavement straight accelerate, respectively completed the contrastive experiment with TCS and without TCS. Test results show that based on driver (AMR) and brake (BMR) joint control ASR system worked reliably, controlled effectively, being able to control excessive driving wheel slip in time, effectively improved the driving ability and handling stability of vehicle.


Author(s):  
J. Kövecses ◽  
R. G. Fenton ◽  
W. L. Cleghorn

Abstract In this paper, an approach is presented for the dynamic modeling and analysis of robotic manipulators having structural flexibility in the links and joints. The formulation allows the user to include different types of flexibilities, as required. This approach includes the dynamic effects of joint driving systems by considering the mass and moments of inertia of their elements, the rotor-link interactions, and the gear reduction ratios; all of which can have significant influences on the behavior of the manipulator. Both distributed-discrete and discretized-discrete parameter models of a robot can be analysed. In the discretized-discrete case, dynamic equations of motion are developed for four model types: rigid link - rigid joint, rigid link - flexible joint, flexible link - rigid joint, and flexible link - flexible joint. An example of a two-link manipulator is considered. Simulation results are presented for different models (flexible joint - rigid link, rigid joint - flexible link, flexible joint - flexible link) of the manipulator. The computations show the influence of joint and link flexibilities on the manipulator performance.


2019 ◽  
Vol 254 ◽  
pp. 03006
Author(s):  
Anna Jaskot ◽  
Bogdan Posiadała

The dynamics problem of motion of the mobile platform with four wheel drive under the unsteady conditions have been formulated and analysed. The mobile platform prototype have been equipped with four independently driven and steered electric drive units.The theoretical model have been formed for the proposed design concept of the platform. The relations between friction forces in longitudinal and transverse directions in reference to the active forces have been considered. The analysis of the motion parameters for different configurations of the wheel positions has been included. The formulated initial problem has been numerically solved by using the Runge-Kutta method of the fourth order. The sample simulation results for different configurations of the platform elements during its motion have been included and the conclusions have been formulated.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 199 ◽  
Author(s):  
Kanwar Bharat Singh

Information about the vehicle sideslip angle is crucial for the successful implementation of advanced stability control systems. In production vehicles, sideslip angle is difficult to measure within the desired accuracy level because of high costs and other associated impracticalities. This paper presents a novel framework for estimation of the vehicle sideslip angle. The proposed algorithm utilizes an adaptive tire model in conjunction with a model-based observer. The proposed adaptive tire model is capable of coping with changes to the tire operating conditions. More specifically, extensions have been made to Pacejka's Magic Formula expressions for the tire cornering stiffness and peak grip level. These model extensions account for variations in the tire inflation pressure, load, tread depth and temperature. The vehicle sideslip estimation algorithm is evaluated through experimental tests done on a rear wheel drive (RWD) vehicle. Detailed experimental results show that the developed system can reliably estimate the vehicle sideslip angle during both steady state and transient maneuvers.


Author(s):  
Imen Hbiri ◽  
Houssem Karkri ◽  
Fathi H. Ghorbel ◽  
Slim Choura

In this paper, we develop the equations of motion at low-speed of a swimming robot for tank floor inspection. The proposed dynamic model incorporates a new friction drag force model for low-speed streamlined swimming robots. Based on a boundary layer theory analysis, we prove that for low-speed maneuvering case (Re from 103 to 105), the friction drag force component is nonlinear and is not insignificant, as previously considered. The proposed drag viscous model is derived based on hydrodynamic laws, validated via computational fluid dynamics (CFD) simulations, and then experimental tests. The model hydrodynamic coefficients are estimated through CFD tools. The robot wheels friction LuGre model is experimentally identified. Extensive experimental tests were conducted on the swimming robot in a circular water pool to validate the complete dynamic model. The dynamic model developed in this paper may be useful to design model-based advanced control laws required for accurate maneuverability of floor inspection swimming robots.


Modelling ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 78-93
Author(s):  
Bora Pulatsu ◽  
Semih Gonen ◽  
Ece Erdogmus ◽  
Paulo B. Lourenço ◽  
Jose V. Lemos ◽  
...  

Nonhomogeneous material characteristics of masonry lead to complex fracture mechanisms, which require substantial analysis regarding the influence of masonry constituents. In this context, this study presents a discontinuum modeling strategy, based on the discrete element method, developed to investigate the tensile fracture mechanism of masonry wallettes parallel to the bed joints considering the inherent variation in the material properties. The applied numerical approach utilizes polyhedral blocks to represent masonry and integrate the equations of motion explicitly to compute nodal velocities for each block in the system. The mechanical interaction between the adjacent blocks is computed at the active contact points, where the contact stresses are calculated and updated based on the implemented contact constitutive models. In this research, different fracture mechanisms of masonry wallettes under tension are explored developing at the unit–mortar interface and/or within the units. The contact properties are determined based on certain statistical variations. Emphasis is given to the influence of the material properties on the fracture mechanism and capacity of the masonry assemblages. The results of the analysis reveal and quantify the importance of the contact properties for unit and unit–mortar interfaces (e.g., tensile strength, cohesion, and friction coefficient) in terms of capacity and corresponding fracture mechanism for masonry wallettes.


2013 ◽  
Vol 392 ◽  
pp. 156-160
Author(s):  
Ju Seok Kang

Multibody dynamics analysis is advantageous in that it uses real dimensions and design parameters. In this study, the stability analysis of a railway vehicle based on multibody dynamics analysis is presented. The equations for the contact points and contact forces between the wheel and the rail are derived using a wheelset model. The dynamics equations of the wheelset are combined with the dynamics equations of the other parts of the railway vehicle, which are obtained by general multibody dynamics analysis. The equations of motion of the railway vehicle are linearized by using the perturbation method. The eigenvalues of these linear dynamics equations are calculated and the critical speed is found.


2001 ◽  
Vol 123 (6) ◽  
pp. 599-606 ◽  
Author(s):  
Stephen J. Piazza ◽  
Scott L. Delp

A three-dimensional, dynamic model of the tibiofemoral and patellofemoral articulations was developed to predict the motions of knee implants during a step-up activity. Patterns of muscle activity, initial joint angles and velocities, and kinematics of the hip and ankle were measured experimentally and used as inputs to the simulation. Prosthetic knee kinematics were determined by integration of dynamic equations of motion subject to forces generated by muscles, ligaments, and contact at both the tibiofemoral and patellofemoral articulations. The modeling of contacts between implants did not rely upon explicit constraint equations; thus, changes in the number of contact points were allowed without modification to the model formulation. The simulation reproduced experimentally measured flexion–extension angle of the knee (within one standard deviation), but translations at the tibiofemoral articulations were larger during the simulated step-up task than those reported for patients with total knee replacements.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750019 ◽  
Author(s):  
Xinfeng Yin ◽  
Yang Liu ◽  
Lu Deng ◽  
Xuan Kong

When studying the vibration of a bridge–vehicle coupled system, most researchers mainly focus on the intact or original bridge structures. Nonetheless, a large number of bridges were built long ago, and most of them have suffered serious deterioration or damage due to the increasing traffic loads, environmental effect, material aging, and inadequate maintenance. Therefore, the effect of damage of bridges, such as cracks, on the vibration of vehicle–bridge coupled system should be studied. The objective of this study is to develop a new method for considering the effect of cracks and road surface roughness on the bridge response. Two vehicle models were introduced: a single-degree-of-freedom (SDOF) vehicle model and a full-scale vehicle model with seven degrees of freedom (DOFs). Three typical bridges were investigated herein, namely, a single-span uniform beam, a three-span stepped beam, and a non-uniform three-span continuous bridge. The massless rotational spring was adopted to describe the local flexibility induced by a crack on the bridge. The coupled equations for the bridge and vehicle were established by combining the equations of motion for both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points. The numerical results show that the proposed method can rationally simulate the vibrations of the bridge with cracks under moving vehicular loads.


2020 ◽  
Vol 5 (12) ◽  
pp. 24-33
Author(s):  
Eric Gratton ◽  
Mbadiwe Benyeogor ◽  
Kosisochukwu Nnoli ◽  
Oladayo Olakanmi ◽  
Liam Wolf ◽  
...  

For a robot to navigate in terrains of rough and uneven topographies, its drives and controllers must generate and control large mechanical power with great precision. This paper is aimed at developing an autonomous robot with active-suspensions in form of a hybrid quadrupedal-wheel drive mechanism. This involves a computational approach to optimizing the development cost without compromising the system’s performance. Using the Solidworks CAD tool, auxiliary components were designed and integrated with the bed structure to form an actively suspended robot drive mechanism. Also, using the S-Math Computing tool, the robot’s suspension system was optimized, employing a four-bar mechanism. To enhance the compatibility of this design with the intended controller, some mathematical equations and numerical validations were formulated and solved. These included the modeling of tip-over stability and skid steering, the trendline equations for computing the angular positions of the suspension servomotors, and the computation of R2– values for determining the accuracy of these trendline equations. Using finite element analysis (FEA), we simulated the structural integrity of key sub-components of the final structure. The results show that our mechanical design is appropriate for developing an actively suspended robot that can efficiently navigate in different terrestrial sites and topographies.


Sign in / Sign up

Export Citation Format

Share Document