scholarly journals The Influence of Machined Surface Microgeometry on Mechanical Hydraulic Removal Mechanism at Ultrasonically Aided EDM Finishing

Author(s):  
D Ghiculescu ◽  
N Marinescu ◽  
S Ganatsios ◽  
L Popa ◽  
G Seritan
2014 ◽  
Vol 1027 ◽  
pp. 107-110
Author(s):  
Jia Liang Guan ◽  
Lei Zhu ◽  
Ling Chen ◽  
Xin Qiang Ma ◽  
Xiao Hui Zhang

The electrolytic in-process dressing (ELID) grinding technology was adopted for precision grinding experiments of volume fraction of 40% of SiCp/Al composites, obtaining the machined surface roughness of Ra0.030μm. Studying the forming mechanism of processed surface, analyzing several typical grinding surface defects, summarizing the grinding characteristics and removal mechanism of SiCp/Al composites.


2015 ◽  
Vol 12 (2) ◽  
pp. 5-9
Author(s):  
Karol Vasilko

Abstract Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.


2018 ◽  
Vol 27 (5) ◽  
pp. 096369351802700 ◽  
Author(s):  
Jiangwen Liu ◽  
Zhibiao Lin ◽  
Zhongning Guo ◽  
Shuzhen Jiang ◽  
Taiman Yue ◽  
...  

In order to research the workpiece materials removal mechanism of Grinding-assisted Electro-chemical Discharge Machining(G-ECDM) of Metal Matrix Composites (MMCs), a good deal of single pulse experiments has been performed in this paper. The crater volume, convex edge, debris, machined surface of G-ECDM have been taken into considerationand it turns out to be that the grinding effect removes the convex edge of the Electro-chemical Discharge Machining (ECDM) crater during the machining of MMCs, the result show that the material removal rate (MRR) of G-ECDM is much higher than that of ECDM and Electrical Discharge Machining (EDM). When compared to the normal ECDM process, it is found that though the Al4C3 phase can be detected in this ECDM condition, no Al4C3 are observed in the processed surface, which indicates a better surface quality. The reason of this phenomenonhas been analyzed theoretically and experimentally. Based on these results, mechanism of the G-ECDM of MMCs was disclosed in this study.


Alloy Digest ◽  
1998 ◽  
Vol 47 (3) ◽  

Abstract Alcoa 2024 alloy has good machinability and machined surface finish capability, and is a high-strength material of adequate workability. It has largely superseded alloy 2017 (see Alloy Digest Al-58, August 1974) for structural applications. The alloy has comparable strength to some mild steels. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as machining and surface treatment. Filing Code: AL-346. Producer or source: ALCOA Wire, Rod & Bar Division.


2020 ◽  
pp. 79-82
Author(s):  
D.YU. Belan ◽  
G.B. Toder ◽  
K.V. Averkov ◽  
YU.V. Titov

A tool was developed for smoothing the plates of an electric motor collector. An analytical dependence of the roughness parameter of the machined surface on the force applied to the tool is obtained. Keywords traction electric motor, collector, diamond burnishing tool, surface-plastic deformation, repair, roughness. [email protected]


1997 ◽  
Vol 35 (8) ◽  
pp. 83-90
Author(s):  
Shigeo Fujii ◽  
Chiaki Niwa ◽  
Mitsuo Mouri ◽  
Ranjna Jindal

Applicability of the rock-bed filtration technique was investigated through pilot-plant experiments in Bangkok, Thailand. Polluted canal water was used as horizontal flow influent to two reactor channels filled with rocks. During one year operation, HRT, filter media, and aeration mode, were changed in several runs. The results showed that 1) the rock-bed filtration with aeration and the HRT more than 6 h can successfully improve polluted klong water by reducing the pollutants (e.g. 60-120mg/L of SS to 20-40 mg/L and 15-30 mg/L of BOD to 5-20 mg/L); 2) main removal mechanism seems to be the sedimentation resulting from the settleability enhanced by aeration, and the biofilm attached onto rocks also works in the reduction of soluble organic matter; 3) a combination of three rock sizes arranged in descending order showed best results; 4) longer HRT (13 h) produces better effluent but is not so effective if it exceeds 9 hours; 5) 60-70% of sediment IL was decomposed in a year, and porosity in rock beds reduced approximately 16%.


1999 ◽  
Vol 39 (6) ◽  
pp. 191-198 ◽  
Author(s):  
Timothy J. Hurse ◽  
Michael A. Connor

In an attempt to gain a better understanding of ammonia and nitrogen removal processes in multi-pond wastewater treatment lagoons, an analysis was carried out of data obtained during regular monitoring of Lagoon 115E at the Western Treatment Plant in Melbourne. To do this, a contour plot approach was developed that enables the data to be displayed as a function of pond number and date. Superimposition of contour plots for different parameters enabled the dependence of ammonia and nitrogen removal rates on various lagoon characteristics to be readily assessed. The importance of nitrification as an ammonia removal mechanism was confirmed. Temperature, dissolved oxygen concentration and algal concentration all had a significant influence on whether or not sizeable nitrifier populations developed and persisted in lagoon waters. The analysis made it evident that a better understanding of microbial, chemical and physical processes in lagoons is needed before their nitrogen removal capabilities can be predicted with confidence.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


2021 ◽  
pp. 107754632110144
Author(s):  
Yiqing Yang ◽  
Haoyang Gao ◽  
Qiang Liu

Turning cutting tool with large length–diameter ratio has been essential when machining structural part with deep cavity and in-depth hole features. However, chatter vibration is apt to occur with the increase of tool overhang. A slender turning cutting tool with a length–diameter ratio of 7 is developed by using a vibration absorber equipped with piezoelectric ceramic. The vibration absorber has dual functions of vibration transfer to the absorber mass and vibration conversion to the electrical energy via the piezoelectric effect. Equations of motion are established considering the dual damping from the piezoelectric ceramic and rubber gasket. The equivalent damping of piezoelectric ceramic is derived, and the geometries are optimized to achieve optimal vibration suppression. The modal analysis demonstrates that the cutting tool with the vibration absorber can reach 80.1% magnitude reduction. Machining tests are carried out in the end. The machining acceleration and machined surface roughness validate the vibration suppression of the VA, and the output voltage by the piezoelectric ceramic demonstrates the ability of vibration sensing.


Sign in / Sign up

Export Citation Format

Share Document