scholarly journals The necessary conditions for the safe operation and mobility of the low-tonnage road train with the maximum load up to 3.5 tons under critical traffic indicators

Author(s):  
Z A Godzhaev ◽  
T Z Godzhaev ◽  
Ya V Kalinin ◽  
V A Korolyash ◽  
O Ju Soloveva
Author(s):  
Zakhid A. Godzhayev ◽  
Teymur Z. Godzhayev ◽  
Vladimir A. Korolyash ◽  
Ol’ga Yu. Solov’yeva

The article considers conditions for safe operation of low-tonnage road trains with overall trailers, namely universal platforms with a load capacity of up to 3 tons, capable of transporting agricultural machines, mini-factories and other equipment, as well as tourist houses. Transportation of such trailers on wheels is associated with high risks arising at small turning radii and emergency braking. (Research purpose) The research purpose is in improving the safety of operation and maneuverability of agricultural low-tonnage road trains operating in difficult road and terrain conditions of agricultural production. (Materials and methods) Authors have analyzed the results of research and experiments on the safe operation of low-tonnage road trains with trailers weighing up to 1 ton. The authors developed and tested on the basis of VIM and the Volga State Technical University a mechanical coupling device with a flexible connection that increases the handling and maneuverability of the trailer. (Results and discussion) The authors determined that the critical turning radii depending on the speed of a low-tonnage road train in different road conditions and different loading of the trailer when driving in front and rear for a conventional single-axle trailer with a load capacity of 1.5; 2; 2.5; 3 tons. It was found that the maneuverability is largely provided by the additional force in the cable, so authors recommend using a cable with a diameter of at least 9 mm. (Conclusion) Further research will make it possible to determine the critical indicators of safe operation of a low-tonnage road train with a load capacity of up to 3.5 tons: safe speed when passing critical turns, emergency braking and reversing.


2014 ◽  
Vol 1030-1032 ◽  
pp. 661-664
Author(s):  
Zhe Zuo

The risk of natural gas long-distance pipeline and main factors of accidents are analyzed in this paper. According the consequences from above, quantitative risk assessment of long-distance pipelines under specific accident scenarios are completed with the help of numerical simulation model on long-distance pipeline leakage and dispersion. What’s more, on the basis of the assessment results, the necessary conditions for long-distance pipeline safe operation are presented. Finally, conclusions and safe operations under necessary conditions given in this paper are helpful for regular operation of pipeline, accident prevention, emergency response and reasonable supervision.


1972 ◽  
Vol 94 (2) ◽  
pp. 83-88
Author(s):  
G. S. Liao ◽  
P. Leung

As steam-electric generating plant unit sizes increase, and as the capacities of the feedwater pumps increase, the design provision of an adequate suction for the safe operation of the feedwater pumps becomes increasingly important, especially when the pumps take suction from a deaerator within the regenerative cycle. The design provision of sufficient suction head for feedwater pumps operating under a maximum and stable turbine load is rather simple. However, the design of an adequate suction head to meet an instant turbine load rejection from maximum load is rather complex. It deals with the rate of pressure decay within the deaerator, mass of condensate stored, size of suction pipes, rate of change of condensate temperatures entering the deaerator, and numerous other transient parameters. Previously published literature [1–5] offers approximate solutions which assumed a constant temperature of condensate entering the deaerator during transient opertion under load rejection. Such an assumption generally results in an unnecessarily conservative design. Particularly, it may not be economically justifiable for very large units to be designed on that basis. This paper presents a complete analysis of this transient operating condition for the purpose of designing an economic optimum feedwater pump suction system for safe and reliable operation. Varying temperatures of the condensate entering the deaerator during transient operation are considered. Mathematic derivations augmented by numerical examples are included, to facilitate system design.


1993 ◽  
Vol 06 (02) ◽  
pp. 85-92 ◽  
Author(s):  
G. L. Coetzee

SummaryThe immediate postoperative biomechanical properties of an “underand-over” cranial cruciate ligament (CCL) replacement technique consisting of fascia lata and the lateral onethird of the patellar ligament, were compared with that of a modified intra- and extracapsular “under-and-over-the-top” (UOTT) method. The right CCL in twelve adult dogs was dissected out and replaced with an autograft. The contralateral, intact CCL served as the control. In group A, the graft was secured to the lateral femoral condyle with a spiked washer and screw. In group B the intracapsular graft was secured to the lateral femoro-fabellar ligament, and the remainder to the patellar tendon. Both CCL replacement techniques exhibited a 2.0 ± 0.5 mm anterior drawer immediately after the operation. After skeletonization of the stifles, the length and cross-sectional area of the intact CCL and CCL substitutes were determined. Each bone-ligament unit was tested in linear tension to failure at a fixed distraction rate of 15 mm/s with the stifle in 120° flexion. Data was processed to obtain the corresponding material parameters (modulus, stress and strain in the linear loading region, and energy absorption to maximum load).The immediate postoperative structural and material properties of the “under-and-over” cranial cruciate ligament replacement technique with autogenous fascia lata, were compared to that of a modified intra- and extracapsular “under-and-over-the-top” (UOTT) method. The combined UOT T technique was slightly stronger (6%), but allowed 2.8 ± 0.9 mm more cranial tibial displacement at maximum linear force.


Author(s):  
Herman Romero Ramírez ◽  
Norma Muñoz Albán ◽  
Consuelo Albán Meneses ◽  
Alicia Escobar Torres

The article´s goal isto determine if socioeconomic factors influence the postoperative complications of cholecystectomy. For this, the observational study was defined, analytical and quantitative study was conducted in 100 patients who underwent cholecystectomy. A logistic regression model was applied in which risk factors, socioeconomic characteristics, along with a control variable, were incorporated as variables. Three models were run with alternative dependent variables that are delimited by the type of postoperative complication recorded. The results found showed that women show a higher risk of presenting complications after cholecystectomy, the same occurs in older patients. Likewise, the risk is much lower in people with higher education levels and in patients who underwent laparoscopic cholecystectomy, they only have a 5% risk of presenting complications. Postoperative complications after cholecystectomy are minimized by using the laparoscopic technique and socioeconomic factors would influence the risk of suffering postoperative complications after said surgery, which makes laparoscopic cholecystectomy a safe operation with many other benefits and advantages over traditional or conventional surgery.


Author(s):  
M LOSKIN

Problems of providing the population and agricultural production by qualitative potable and process water in the Central Yakutia are covered. This territory belongs to the region with acute shortage of water resources which is always a limiting factor of development of agricultural production. For the solution of this burning issue in the 80th years of the last century along the small rivers the systems of hydraulic engineering constructions providing requirements with process water practically of all settlements of the Central Yakutia were constructed. At a construction of all hydraulic engineering buildings the method of construction with preservation of soils of the basis of constructions in a frozen state was applied. When warming the climate which is observed in recent years hydraulic engineering constructions built in regions of a wide spread occurance of breeds of an ice complex and with the considerable volume of water weight, were especially vulnerable. On character and a design they experience continuous threat of damage and demand very attentive relation from the operating organizations. Taking this into account, safe operation of hydraulic engineering constructions in a zone of distribution of permafrost breeds demands new approaches. The article examines features of hydraulic engineering constructions’ operation of agricultural water supply objects in the Central Yakutia. Distinctiveness of hydraulic engineering constructions’ operation is that stability of constructions is intimately bound to temperature impact of a reservoir on ground dams’ body and the basis of constructions. The possibility of inclusion of ways for an intensification of a freezing of constructions in the structure of operational actions is studied. The new method on safe operation of hydraulic engineering constructions as prewinter abatement of the water level in a reservoir accounting volumes and norms of water consumption of the settlement is offered.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Suganjar Suganjar ◽  
Renny Hermawati

<p><em>Safety management in the shipping industry is based on an international regulation. It is International Safety Management Code (ISM-Code) which is a translation of SOLAS ‘74 Chapter IX. It stated that t</em><em>he objectives of the Code are to ensure safety at sea, prevention of human injury or loss of life, and avoidance of damage to the environment, in particular, to the marine environment, and to property.it is also</em><em> requires commitment from top management to implementation on both company and on board. The implementation of the ISM-Code is expected to make the ship’s safety is more secure. The ISM-Code fulfillment refers to 16 elements, there are; General; Safety and Environmental Protection Policy; Company Responsibility and Authority; Designated Person(s); Master Responsibility and Authority; Resources and Personnel; Shipboard Operation; Emergency Preparedness; Report and Analysis of Non-conformities, Accidents and Hazardous Occurrences; Maintenance of the Ship and Equipment; Documentation; Company Verification, Review, and Evaluation;  Certification and Periodical Verification; Interim Certification; Verification; Forms of Certificate. The responsibility and authority of Designated Person Ashore / DPA in a shipping company is regulated in the ISM-Code. So, it is expected that DPA can carry out its role well, than can minimize the level of accidents in each vessels owned/operated by each shipping company.</em></p><p><em></em><strong><em>Keywords :</em></strong><em> ISM Code,</em><em> </em><em>Safety management, </em><em>Designated Person Ashore</em></p><p> </p><p> </p><p>Manajemen keselamatan di bidang pelayaran saat ini diimplementasikan dalam suatu peraturan internasional yaitu <em>International Safety Management Code</em> (<em>ISM-Code</em>) yang merupakan penjabaran dari <em>SOLAS 74 Chapter IX</em>-<em>Management for the safe operation of ships</em>. Tujuan dari <em>ISM-Code</em> <em>“The objectives of the Code are to ensure safety at sea, prevention of human injury or loss of life, and avoidance of damage to the environment, in particular, to the marine environment, and to property”</em> dan  <em>ISM-Code</em> menghendaki adanya komitmen dari manajemen tingkat puncak sampai pelaksanaan, baik di darat maupun di kapal.  Pemberlakuan <em>ISM-Code</em> tersebut diharapkan akan membuat keselamatan kapal menjadi lebih terjamin. Pemenuhan <em>ISM-Code</em> mengacu kepada 16 elemen yang terdiri dari ; umum; kebijakan keselamatan  dan perlindungan lingkungan; tanggung jawab dan wewenang perusahaan; petugas yang ditunjuk didarat; tanggung jawab dan wewenang nahkoda; sumber daya dan personil; pengopersian kapal; kesiapan menghadapi keadaan darurat; pelaporan dan analisis ketidaksesuaian, kecelakaan dan kejadian berbahaya; pemeliharaan kapal dan perlengkapan;  Dokumentasi; verifikasi, tinjauan ulang, dan evaluasi oleh perusahaan; sertifikasi dan verifikasi berkala; sertifikasi sementara; verifikasi; bentuk sertifikat. Tugas dan tanggungjawab <em>Designated Person Ashore/DPA </em>didalam suatu perusahaan pelayaran<em>, </em>telah diatur di dalam <em>ISM-Code.</em>  Sehingga diharapkan agar DPA dapat melaksanakan peranannya dengan baik, sehingga dapat menekan tingkat kecelakaan di setiap armada kapal yang dimiliki oleh setiap perusahaan pelayaran.</p><p class="Style1"><strong>Kata kunci</strong> : <em>ISM Code</em>, Manajemen keselamatan, <em>Designated Person Ashore</em></p>


Sign in / Sign up

Export Citation Format

Share Document