Citrate-stabilized Q-CdSe seed-mediated synthesis of silver nanoparticles: The role of citrate moieties anchored to the Q-CdSe surface

2016 ◽  
Vol 3 (3) ◽  
pp. 035001 ◽  
Author(s):  
Pravin P Ingole ◽  
Mohsin A Bhat
2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Mai Ngọc Tuan Anh

Silver nanoplates (SNPs) having different size were synthesized by a seed-mediated method. The seeds -silver nanoparticles with 4 – 6 nm diameters were synthesized first by reducing silver nitrate with sodium borohydride in the present of Trisodium Citrate and Hydrogen peroxide. Then these seeds were developed by continue reducing Ag\(^+\) ions with various amount of L-Ascorbic acid to form SNPs. Our analysis showed that the concentratrion of L-Ascorbic acid, a secondary reducing agent, played an important role to form SNPs. In addition, the size and in-plane dipole plasmon resonance wavelenght of silver nanoplates were increased when the concentration of added silver nitrate increased. The characterization of SNPs were studied by UV-Vis, FE-SEM, EDS and TEM methods.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Author(s):  
M.H.H. Awaad ◽  
K.M. El. Moustafa ◽  
S.A. Zoulfakar ◽  
M.S. Elhalawany ◽  
F.F. Mohammed ◽  
...  

2013 ◽  
Vol 65 ◽  
pp. S104
Author(s):  
Manuel Alejandro Ramirez-Lee ◽  
Hector Rosas-Hernandez ◽  
Samuel Salazar-Garcia ◽  
Jose Manuel Gutiérrez-Hernández ◽  
Ricardo Espinosa- Tanguma ◽  
...  

2016 ◽  
Vol 36 (1) ◽  
pp. 243-253 ◽  
Author(s):  
Sandra F. Gonçalves ◽  
Maria D. Pavlaki ◽  
Rafael Lopes ◽  
Julia Hammes ◽  
Julián Alberto Gallego-Urrea ◽  
...  

2017 ◽  
Vol 175 ◽  
pp. 269-281
Author(s):  
Ranju Prasad Mandal ◽  
Gunjan Mandal ◽  
Sudeshna Sarkar ◽  
Arindam Bhattacharyya ◽  
Swati De

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2034
Author(s):  
Zubair Ahmed Ratan ◽  
Fazla Rabbi Mashrur ◽  
Anisha Parsub Chhoan ◽  
Sadi Md. Shahriar ◽  
Mohammad Faisal Haidere ◽  
...  

Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6610
Author(s):  
Ana T. Rufino ◽  
Ana Ramalho ◽  
Adelaide Sousa ◽  
José Miguel P. Ferreira de Oliveira ◽  
Paulo Freitas ◽  
...  

Silver nanoparticles (AgNP) have been increasingly incorporated into food-related and hygiene products for their unique antimicrobial and preservative properties. The consequent oral exposure may then result in unpredicted harmful effects in the gastrointestinal tract (GIT), which should be considered in the risk assessment and risk management of these materials. In the present study, the toxic effects of polyethyleneimine (PEI)-coated AgNP (4 and 19 nm) were evaluated in GIT-relevant cells (Caco-2 cell line as a model of human intestinal cells, and neutrophils as a model of the intestinal inflammatory response). This study also evaluated the putative protective action of dietary flavonoids against such harmful effects. The obtained results showed that AgNP of 4 and 19 nm effectively induced Caco-2 cell death by apoptosis with concomitant production of nitric oxide, irrespective of the size. It was also observed that AgNP induced human neutrophil oxidative burst. Interestingly, some flavonoids, namely quercetin and quercetagetin, prevented the deleterious effects of AgNP in both cell types. Overall, the data of the present study provide a first insight into the promising protective role of flavonoids against the potentially toxic effects of AgNP at the intestinal level.


Sign in / Sign up

Export Citation Format

Share Document