Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

2017 ◽  
Vol 4 (7) ◽  
pp. 076513 ◽  
Author(s):  
M Waqas Khaliq ◽  
M Z Butt ◽  
Murtaza Saleem
2020 ◽  
Vol 96 (3s) ◽  
pp. 148-153
Author(s):  
С.Д. Федотов ◽  
А.В. Бабаев ◽  
В.Н. Стаценко ◽  
К.А. Царик ◽  
В.К. Неволин

Представлены результаты изучения морфологии поверхности и структуры слоев AlN, сформированных аммиачной МЛЭ на темплейтах 3C-SiC/Si(111) on-axis- и 4° off-axis-разориентации. Опробован технологический режим низкотемпературной эпитаксии зародышевого слоя AlN на поверхности 3C-SiC(111). Среднеквадратичная шероховатость поверхности (5 х 5 мкм) слоев AlN толщиной 150 ± 50 нм составила 2,5-3,5 нм на темплейтах 3C-SiC/Si(111) on-axis и 3,3-3,5 нм на 4° off-axis. Показано уменьшение шероховатости смачивающего слоя AlN при изменении скорости роста. Получены монокристаллические слои AlN(0002) со значениями FWHM (ω-геометрия) 1,4-1,6°. The paper presents the surface morphology and crystal structure of AlN layers formed by ammonia MBE on 3C-SiC/Si(111) on-axis and 4° off-axis disorientation. It offers the technological approach of low-temperature epitaxy of the AlN nucleation layer on the 3C-SiC (111) surface. Root mean square roughness (5 х 5 |xm) of AlN layers with thickness of 150 ± 50 nm was 2,5-3,5 nm onto on-axis templates and 3.3-3.5 nm onto 4° off-axis. It appears that the RMS roughness of the AlN surface is changing with the growth rate variation. Single-crystal AlN(0002) layers with FWHM values (ω-geometry) of 1.4-1.6° have been obtained.


1995 ◽  
Vol 388 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yuusaku Naota

AbstractAluminum nitride (AlN) thin films have been synthesized by ion-beam assisted deposition method. Film deposition has been performed on the substrates of silicon single crystal, soda-lime glass and alumin A. the influence of the substrate roughness on the film roughness is studied. the substrate temperature has been kept at room temperature and 473K and the kinetic energy of the incident nitrogen ion beam and the deposition rate have been fixed to 0.5 keV and 0.07 nm/s, respectively. the microstructure of the synthesized films has been examined by X-ray diffraction (XRD) and the surface morphology has been observed by atomic force microscopy(AFM). IN the XRD patterns of films synthesized at both room temperature and 473K, the diffraction line indicating the alN (10*0) can be discerned and the broad peak composed of two lines indicating the a1N (00*2) and a1N (10*1) planes is also observed. aFM observations for 100 nm films reveal that (1) the surface of the films synthesized on the silicon single crystal and soda-lime glass substrates is uniform and smooth on the nanometer scale, (2) the average roughness of the films synthesized on the alumina substrate is similar to that of the substrate, suggesting the evaluation of the average roughness of the film itself is difficult in the case of the rough substrate, and (3) the average roughness increases with increasing the substrate temperature.


Author(s):  
M. Yu. Tashmetov ◽  
F. K. Khallokov ◽  
N. B. Ismatov ◽  
I. I. Yuldashova ◽  
S. Kh. Umarov

It is shown that the replacement of a part of sulfur atoms with selenium atoms in a TlInS2 single crystal stimulates the formation of a single-phase state with a monoclinic structure (space group [Formula: see text]/[Formula: see text] in TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]). Irradiation with 2 MeV electrons and a fluence of [Formula: see text] electron/cm2 of powder TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) leads to an increase in the crystallite size from 56.5 nm to 65 nm, which is most likely associated with a decrease in the interface. The difference between the surface morphology of the synthesized TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal and the surface morphology of the TlInS2 single crystal is established, which consists in a decrease in the height and width of the roughness in TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]). Irradiation of a TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal with electrons with a fluence of [Formula: see text] electron/cm2 does not lead to a change in the height of the tubercle on its surface, and the average value of its width increases more than ten-fold. The identity of the peaks in the Raman spectra of the TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal before and after its irradiation with electrons with an energy of 2 MeV and upto a fluence of [Formula: see text] electron/cm2, along with the absence of a shift of the peaks, indicates the radiation resistance of the TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5964
Author(s):  
Guoqing Shao ◽  
Juan Wang ◽  
Shumiao Zhang ◽  
Yanfeng Wang ◽  
Wei Wang ◽  
...  

Homoepitaxial growth of step-flow single crystal diamond was performed by microwave plasma chemical vapor deposition system on high-pressure high-temperature diamond substrate. A coarse surface morphology with isolated particles was firstly deposited on diamond substrate as an interlayer under hillock growth model. Then, the growth model was changed to step-flow growth model for growing step-flow single crystal diamond layer on this hillock interlayer. Furthermore, the surface morphology evolution, cross-section and surface microstructure, and crystal quality of grown diamond were evaluated by scanning electron microscopy, high-resolution transmission electron microcopy, and Raman and photoluminescence spectroscopy. It was found that the surface morphology varied with deposition time under step-flow growth parameters. The cross-section topography exhibited obvious inhomogeneity in crystal structure. Additionally, the diamond growth mechanism from the microscopic point of view was revealed to illustrate the morphological and structural evolution.


2020 ◽  
Vol 995 ◽  
pp. 89-93
Author(s):  
A.N. Jannah ◽  
S.A. Halim ◽  
H. Abdullah

In this study, pulsed laser deposition technique was used to deposit bismuth plumbum strontium calcium copper oxide {Bi (Pb)SrCaCu0} thin films on MgO single crystal substrate. Solid state procedure which is inexpensive technique used in the production process of the Bi (Pb)SrCaCu0 superconductor bulk sample. In this work, Handy YAG Lasers (model: HYL 101 E) has been used. It is a high power class 4 solid state (ND: YAG) Q-switched pulsed laser and 532 nm (visible green: second harmonic) has been used to ablate the films. The substrate used in this work was single crystal MgO with the (100) orientation. Scanning Electron Microscopy (SEM) was used to observe the microstructure of fracture surface and cross section of thin film materials. Variable Pressure Scanning Electron Microscope (LEO-VPSEM) was used to study the correlation between the microstructure features. SEM studies have shown that the surface morphology of the bulk sample comprises platelets of average size ≈10μm with uniform and homogenous microstructure. The typical morphology of the as deposited films showed a continuous phase, granular structure, which spherical particles up to 5μm in diameter. The most prominent types of particulates BPSCCO films on MgO substrate are droplets with smooth surface, bigger droplets with granular surface, spherically-shaped features confined by randomly oriented facets, submicron rod-like features, Cu-enriched needles, platelets, irregularly-shaped Cu-rich outgrowths, strongly Cu-enriched tabular outgrowths, big target fragments, island growth structure, cubic and rectangular cubic structures. SEM analysis also showed that the deposition time have a pronounced influence on the particle size. The target morphology, which develops under laser-irradiation, depends on the laser fluence and the technique, by which the laser beam is moved relatively to the target during ablation. Laser-irradiated surfaces normally become altered both physically and chemically and morphological changes take the form of periodic structures such as ripples and ridges.


2018 ◽  
Vol 53 (7) ◽  
pp. 1800055 ◽  
Author(s):  
Yun Zhao ◽  
Yanzhao Guo ◽  
Liangzhen Lin ◽  
Yuting Zheng ◽  
Lifu Hei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document