scholarly journals Surface Morphology and Microstructure Evolution of Single Crystal Diamond during Different Homoepitaxial Growth Stages

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5964
Author(s):  
Guoqing Shao ◽  
Juan Wang ◽  
Shumiao Zhang ◽  
Yanfeng Wang ◽  
Wei Wang ◽  
...  

Homoepitaxial growth of step-flow single crystal diamond was performed by microwave plasma chemical vapor deposition system on high-pressure high-temperature diamond substrate. A coarse surface morphology with isolated particles was firstly deposited on diamond substrate as an interlayer under hillock growth model. Then, the growth model was changed to step-flow growth model for growing step-flow single crystal diamond layer on this hillock interlayer. Furthermore, the surface morphology evolution, cross-section and surface microstructure, and crystal quality of grown diamond were evaluated by scanning electron microscopy, high-resolution transmission electron microcopy, and Raman and photoluminescence spectroscopy. It was found that the surface morphology varied with deposition time under step-flow growth parameters. The cross-section topography exhibited obvious inhomogeneity in crystal structure. Additionally, the diamond growth mechanism from the microscopic point of view was revealed to illustrate the morphological and structural evolution.

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 91 ◽  
Author(s):  
Xiwei Wang ◽  
Peng Duan ◽  
Zhenzhong Cao ◽  
Changjiang Liu ◽  
Dufu Wang ◽  
...  

The diamond mosaic grown on the single-crystal diamond substrates by the microwave plasma chemical vapor deposition (MPCVD) method has been studied. The average growth rate was about 16–17 μm/h during 48 hours’ growth. The surface morphologies of the as-grown diamond layer were observed. It was found that the step flow was able to move across the substrates and cover the junction interface. Raman spectroscopic mapping in the central area of the junction revealed the high stress region movement across the junction interface from one substrate to the other for about 200–400 μm. High-resolution X-ray diffractometry (HRXRD) results proved that the surface step flow movement direction had nothing to do with the off-axis directions of the original substrates. It was found that the surface height difference of substrate was the main driving force for the step flow movement, junction combination and surface morphology changing. The mechanism of the mosaic interface junction combination and step flow transformation on the mosaic surface was proposed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 444
Author(s):  
Ruozheng Wang ◽  
Fang Lin ◽  
Gang Niu ◽  
Jianing Su ◽  
Xiuliang Yan ◽  
...  

A lower dislocation density substrate is essential for realizing high performance in single-crystal diamond electronic devices. The in-situ tungsten-incorporated homoepitaxial diamond by introducing tungsten hexacarbonyl has been proposed. A 3 × 3 × 0.5 mm3 high-pressure, high-temperature (001) diamond substrate was cut into four pieces with controlled experiments. The deposition of tungsten-incorporated diamond changed the atomic arrangement of the original diamond defects so that the propagation of internal dislocations could be inhibited. The SEM images showed that the etching pits density was significantly decreased from 2.8 × 105 cm−2 to 2.5 × 103 cm−2. The reduction of XRD and Raman spectroscopy FWHM proved that the double-layer tungsten-incorporated diamond has a significant effect on improving the crystal quality of diamond bulk. These results show the evident impact of in situ tungsten-incorporated growth on improving crystal quality and inhibiting the dislocations propagation of homoepitaxial diamond, which is of importance for high-quality diamond growth.


2005 ◽  
Vol 252 (2) ◽  
pp. 364-371 ◽  
Author(s):  
M. Kamiko ◽  
H. Mizuno ◽  
H. Chihaya ◽  
J.-H. Xu ◽  
I. Kojima ◽  
...  

2000 ◽  
Vol 9 (3-6) ◽  
pp. 290-294 ◽  
Author(s):  
Yoshiki Nishibayashi ◽  
Hirohisa Saito ◽  
Takahiro Imai ◽  
Naoji Fujimori

Vacuum ◽  
2010 ◽  
Vol 84 (12) ◽  
pp. 1423-1426 ◽  
Author(s):  
Takashi Nagase ◽  
Hiroyuki Kato ◽  
Shahjada A. Pahlovy ◽  
Iwao Miyamoto

2015 ◽  
Vol 1734 ◽  
Author(s):  
Samuel L. Moore ◽  
Yogesh K. Vohra

ABSTRACTChemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. Altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.


2011 ◽  
Vol 679-680 ◽  
pp. 55-58 ◽  
Author(s):  
Birgit Kallinger ◽  
Bernd Thomas ◽  
Patrick Berwian ◽  
Jochen Friedrich ◽  
Gerd Trachta ◽  
...  

Homoepitaxial growth on 4° off-axis substrates with different off-cut directions, i.e. [11-20] and [1-100], was investigated using a commercial CVD reactor. The characteristics of the growth process on substrates with different off-cut directions were determined with respect to applicable C/Si ratio, growth rate and n- and p-type doping range. Stable step flow growth was achieved over a broad range of C/Si ratio at growth rates ~ 15 µm/h in both cases. The n-type doping level of epilayers can be controlled at least in the range from 5  1014 cm-3 to 3  1017 cm-3 on both types of substrates. Highly p-type epilayers with p = 2  1019 cm-3 can also be grown on [1-100] off-cut substrates. Hence, the growth process for standard substrates was successfully transferred to [1-100] off-cut substrates resulting in epilayers with similar doping levels. The dislocation content of the grown epilayers was investigated by means of defect selective etching (DSE) in molten KOH. For both off-cut directions of the substrates, similar densities of threading edge dislocations (TED), threading screw dislocations (TSD) and basal plane dislocations (BPD) were found in the epilayers. Epilayers with very low BPD density can be grown on both kinds of substrates. The remaining BPDs in epilayers are inclined along the off-cut direction of the substrate. The surface morphology and roughness was investigated by atomic force microscopy (AFM). The epilayers grown on [1-100] off-cut substrates are smoother than those on standard substrates.


2014 ◽  
Vol 2014.67 (0) ◽  
pp. _708-1_-_708-3_
Author(s):  
Shin NAGAE ◽  
Yusuke ARAO ◽  
Akihisa KUBOTA ◽  
Mutsumi TOUGE ◽  
Shinichi SHIKATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document