scholarly journals Genomic Expression Responses to DNA-damaging Agents and the Regulatory Role of the Yeast ATR Homolog Mec1p

2001 ◽  
Vol 12 (10) ◽  
pp. 2987-3003 ◽  
Author(s):  
Audrey P. Gasch ◽  
Mingxia Huang ◽  
Sandra Metzner ◽  
David Botstein ◽  
Stephen J. Elledge ◽  
...  

Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. The human ATR kinase and its homolog in yeast, MEC1, play central roles in transducing the damage signal. To characterize the role of the Mec1 pathway in modulating the cellular response to DNA damage, we used DNA microarrays to observe genomic expression inSaccharomyces cerevisiae responding to two different DNA-damaging agents. We compared the genome-wide expression patterns of wild-type cells and mutants defective in Mec1 signaling, includingmec1, dun1, and crt1 mutants, under normal growth conditions and in response to the methylating-agent methylmethane sulfonate (MMS) and ionizing radiation. Here, we present a comparative analysis of wild-type and mutant cells responding to these DNA-damaging agents, and identify specific features of the gene expression responses that are dependent on the Mec1 pathway. Among the hundreds of genes whose expression was affected by Mec1p, one set of genes appears to represent an MEC1-dependent expression signature of DNA damage. Other aspects of the genomic responses were independent of Mec1p, and likely independent of DNA damage, suggesting the pleiotropic effects of MMS and ionizing radiation. The complete data set as well as supplemental materials is available at http://www-genome.stanford.edu/mec1 .

1998 ◽  
Vol 84 (5) ◽  
pp. 517-520 ◽  
Author(s):  
Vincenzo Chiarugi ◽  
Lucia Magnelli ◽  
Marina Cinelli

Wild-type p53 is involved in cellular response to DNA damage including cell cycle control, DNA repair and activation of apoptosis. Accumulation of p53 protein following DNA damage may initiate the apoptotic process, resulting in cell death. DNA damage induced by radiation is an example of apoptotic stimulus involving p53. Regulation of apoptosis by p53 can occur through transcriptional regulation of pro-apoptotic (e.g. bax) and anti-apoptotic (e.g. bel-2) factors. Although wild-type p53 usually sensitizes cells to radiation therapy, p53 mutations have a variable effect on radiation response. For example p53 mutations in bone or breast tumors have been found to be associated with resistance to chemotherapeutic drugs or ionizing radiation. Mutated p53 has has been reported to increase sensitivity to radiation and drugs in colorectal and bladder tumors. The present brief commentary tries to find an explanation at molecular level of these conflicting results.


1998 ◽  
Vol 45 (3) ◽  
pp. 701-704 ◽  
Author(s):  
M Kruszewski ◽  
T Iwaneńko

The role of nuclear proteins in protection of DNA against ionizing radiation and their contribution to the radiation sensitivity was examined by an alkaline version of comet assay in two L5178Y (LY) mouse lymphoma cell lines differing in sensitivity to ionizing radiation. LY-S cells are twice more sensitive to ionizing radiation than LY-R cells (D0 values of survival curves are 0.5 Gy and 1 Gy, respectively). Sequential removal of nuclear proteins by extraction with NaCl of different concentrations increased the X-ray induced DNA damage in LY-R nucleoids. In contrast, in the radiation sensitive LY-S cell line, depletion of nuclear proteins practically did not affect DNA damage. Although there is no doubt that the main cause of LYS cells' sensitivity to ionizing radiation is a defect in the repair of double-strand breaks, our data support the concept that nuclear matrix organisation may contribute to the cellular susceptibility to DNA damaging agents.


2011 ◽  
Vol 18 (5) ◽  
pp. 555-564 ◽  
Author(s):  
Antje Klagge ◽  
Carl Weidinger ◽  
Kerstin Krause ◽  
Beate Jessnitzer ◽  
Monika Gutknecht ◽  
...  

Members of the forkhead box-O (FOXO) transcription factors family play an important role in stress defence. FOXO3 deregulation has recently been identified as a hallmark of thyroid carcinogenesis. In this study, we explore the role of FOXO3 in defence of oxidative stress in normal thyrocytes. Stable rat thyroid cell lines were generated expressing either the human wild-type FOXO3, a constitutively activating FOXO3 mutant, or the empty control vector. Cell clones were characterised for proliferation, function and morphology. Hydrogen peroxide and UV irradiation were used to induce oxidative stress. Changes in FOXO3 activity, induction of cell cycle arrest or apoptosis and kinetics of DNA damage repair were analysed. Upregulation of FOXO3 in thyrocytes resulted in decreased proliferation and changes in morphology, but did not affect differentiation. Hydrogen peroxide stimulated the expression of the FOXO3 target genes growth arrest and DNA damage-inducible protein 45 α (Gadd45α) and Bcl-2 interacting mediator of cell death (BIM) and induced programmed cell death in cells with overexpression of the human wild-type FOXO3. In contrast, UV irradiation resulted in a distinct cellular response with activation of FOXO3-c-Jun-N-terminal kinase-Gadd45α signalling and induction of cell cycle arrest at the G2-M-checkpoint. This was accompanied by FOXO3-induced DNA damage repair as evidenced by lower DNA breaks over time in a comet assay in FOXO3 cell clones compared with control cells. In conclusion, FOXO3 is a pivotal relay in the coordination of the cellular response to genotoxic stress in the thyroid. Depending on the stimulus, FOXO3 induces either cell cycle arrest or apoptosis. Conversely, FOXO3 inactivation in thyroid cancers is consistent with genomic instability and loss of cell cycle control.


2000 ◽  
Vol 182 (17) ◽  
pp. 4970-4978 ◽  
Author(s):  
M. Cecilia López ◽  
Henry V. Baker

ABSTRACT The phenotype of an organism is the manifestation of its expressed genome. The gcr1 mutant of yeast grows at near wild-type rates on nonfermentable carbon sources but exhibits a severe growth defect when grown in the presence of glucose, even when nonfermentable carbon sources are available. Using DNA microarrays, the genomic expression patterns of wild-type and gcr1 mutant yeast growing on various media, with and without glucose, were compared. A total of 53 open reading frames (ORFs) were identified asGCR1 dependent based on the criterion that their expression was reduced twofold or greater in mutant versus wild-type cultures grown in permissive medium consisting of YP supplemented with glycerol and lactate. The GCR1-dependent genes, so defined, fell into three classes: (i) glycolytic enzyme genes, (ii) ORFs carried by Ty elements, and (iii) genes not previously known to beGCR1 dependent. In wild-type cultures,GCR1-dependent genes accounted for 27% of the total hybridization signal, whereas in mutant cultures, they accounted for 6% of the total. Glucose addition to the growth medium resulted in a reprogramming of gene expression in both wild-type and mutant yeasts. In both strains, glycolytic enzyme gene expression was induced by the addition of glucose, although the expression of these genes was still impaired in the mutant compared to the wild type. By contrast, glucose resulted in a strong induction of Ty-borne genes in the mutant background but did not greatly affect their already high expression in the wild-type background. Both strains responded to glucose by repressing the expression of genes involved in respiration and the metabolism of alternative carbon sources. Thus, the severe growth inhibition observed in gcr1 mutants in the presence of glucose is the result of normal signal transduction pathways and glucose repression mechanisms operating without sufficient glycolytic enzyme gene expression to support growth via glycolysis alone.


2002 ◽  
Vol 184 (22) ◽  
pp. 6357-6366 ◽  
Author(s):  
José A. C. Lemos ◽  
Robert A. Burne

ABSTRACT Tolerance of environmental stress, especially low pH, by Streptococcus mutans is central to the virulence of this organism. The Clp ATPases are implicated in the tolerance of, and regulation of the response to, stresses by virtue of their protein reactivation and remodeling activities and their capacity to target misfolded proteins for degradation by the ClpP peptidase. The purpose of this study was to dissect the role of selected clp genes in the stress responses of S. mutans, with a particular focus on acid tolerance and adaptation. Homologues of the clpB, clpC, clpE, clpL, clpX, and clpP genes were identified in the S. mutans genome. The expression of clpC and clpP, which were chosen as the focus of this study, was induced at low pH and at growth above 40°C. Inactivation of ctsR, the first of two genes in the clpC operon, demonstrated that CtsR acts as a repressor of clp and groES-EL gene expression. Strains lacking ClpP, but not strains lacking ClpC, were impaired in their ability to grow under stress-inducing conditions, formed long chains, aggregated in culture, had reduced genetic transformation efficiencies, and had a reduced capacity to form biofilms. Comparison of two-dimensional protein gels from wild-type cells and the ctsR and clpP mutants revealed many changes in the protein expression patterns. In particular, in the clpP mutant, there was an increased production of GroESL and DnaK, suggesting that cells were stressed, probably due to the accumulation of denatured proteins.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 881 ◽  
Author(s):  
Razan Muhtadi ◽  
Alexander Lorenz ◽  
Samantha J. Mpaulo ◽  
Christian Siebenwirth ◽  
Harry Scherthan

Environmental stress, reactive oxygen species (ROS), or ionizing radiation (IR) can induce adverse effects in organisms and their cells, including mutations and premature aging. DNA damage and its faulty repair can lead to cell death or promote cancer through the accumulation of mutations. Misrepair in germ cells is particularly dangerous as it may lead to alterations in developmental programs and genetic disease in the offspring. DNA damage pathways and radical defense mechanisms mediate resistance to genotoxic stresses. Here, we investigated, in the fission yeast Schizosaccharomyces pombe, the role of the H2O2-detoxifying enzyme cytosolic catalase T (Ctt1) and the Fe2+/Mn2+ symporter Pcl1 in protecting meiotic chromosome dynamics and gamete formation from radicals generated by ROS and IR. We found that wild-type and pcl1-deficient cells respond similarly to X ray doses of up to 300 Gy, while ctt1∆ meiocytes showed a moderate sensitivity to IR but a hypersensitivity to hydrogen peroxide with cells dying at >0.4 mM H2O2. Meiocytes deficient for pcl1, on the other hand, showed a resistance to hydrogen peroxide similar to that of the wild type, surviving doses >40 mM. In all, it appears that in the absence of the main H2O2-detoxifying pathway S. pombe meiocytes are able to survive significant doses of IR-induced radicals.


Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 909-919 ◽  
Author(s):  
Michael Fasullo ◽  
Joseph Koudelik ◽  
Peter AhChing ◽  
Peter Giallanza ◽  
Cinzia Cera

Abstract The biological significance of DNA damage-induced gene expression in conferring resistance to DNA-damaging agents is unclear. We investigated the role of DUN1-mediated, DNA damage-inducible gene expression in conferring radiation resistance in Saccharomyces cerevisiae. The DUN1 gene was assigned to the RAD3 epistasis group by quantitating the radiation sensitivities of dun1, rad52, rad1, rad9, rad18 single and double mutants, and of the dun1 rad9 rad52 triple mutant. The dun1 and rad52 single mutants were similar in terms of UV sensitivities; however, the dun1 rad52 double mutant exhibited a synergistic decrease in UV resistance. Both spontaneous intrachromosomal and heteroallelic gene conversion events between two ade2 alleles were enhanced in dun1 mutants, compared to DUN1 strains, and elevated recombination was dependent on RAD52 but not RAD1 gene function. Spontaneous sister chromatid exchange (SCE), as monitored between truncated his3 fragments, was not enhanced in dun1 mutants, but UV-induced SCE and heteroallelic recombination were enhanced. Ionizing radiation and methyl methanesulfonate (MMS)-induced DNA damage did not exhibit greater recombinogenicity in the dun1 mutant compared to the DUN1 strain. We suggest that one function of DUN1-mediated DNA damage-induced gene expression is to channel the repair of UV damage into a nonrecombinogenic repair pathway.


2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Amir Fallahshahroudi ◽  
Martin Johnsson ◽  
Enrico Sorato ◽  
S J Kumari A Ubhayasekera ◽  
Jonas Bergquist ◽  
...  

Abstract Domestic chickens are less fearful, have a faster sexual development, grow bigger, and lay more eggs than their primary ancestor, the red junglefowl. Several candidate genetic variants selected during domestication have been identified, but only a few studies have directly linked them with distinct phenotypic traits. Notably, a variant of the thyroid stimulating hormone receptor (TSHR) gene has been under strong positive selection over the past millennium, but it’s function and mechanisms of action are still largely unresolved. We therefore assessed the abundance of the domestic TSHR variant and possible genomic selection signatures in an extensive data set comprising multiple commercial and village chicken populations as well as wild-living extant members of the genus Gallus. Furthermore, by mean of extensive backcrossing we introgressed the wild-type TSHR variant from red junglefowl into domestic White Leghorn chickens and investigated gene expression, hormone levels, cold adaptation, and behavior in chickens possessing either the wild-type or domestic TSHR variant. While the domestic TSHR was the most common variant in all studied domestic populations and in one of two red junglefowl population, it was not detected in the other Gallus species. Functionally, the individuals with the domestic TSHR variant had a lower expression of the TSHR in the hypothalamus and marginally higher in the thyroid gland than wild-type TSHR individuals. Expression of TSHB and DIO2, two regulators of sexual maturity and reproduction in birds, was higher in the pituitary gland of the domestic-variant chickens. Furthermore, the domestic variant was associated with higher activity in the open field test. Our findings confirm that the spread of the domestic TSHR variant is limited to domesticated chickens, and to a lesser extent, their wild counterpart, the red junglefowl. Furthermore, we showed that effects of genetic variability in TSHR mirror key differences in gene expression and behavior previously described between the red junglefowl and domestic chicken.


Sign in / Sign up

Export Citation Format

Share Document