scholarly journals A Novel c-Jun N-terminal Kinase (JNK)-binding Protein WDR62 Is Recruited to Stress Granules and Mediates a Nonclassical JNK Activation

2010 ◽  
Vol 21 (1) ◽  
pp. 117-130 ◽  
Author(s):  
Tanya Wasserman ◽  
Ksenya Katsenelson ◽  
Sharon Daniliuc ◽  
Tal Hasin ◽  
Mordechay Choder ◽  
...  

The c-Jun N-terminal kinase (JNK) is part of a mitogen-activated protein kinase (MAPK) signaling cascade. Scaffold proteins simultaneously associate with various components of the MAPK signaling pathway and play a role in signal transmission and regulation. Here we describe the identification of a novel scaffold JNK-binding protein, WDR62, with no sequence homology to any of the known scaffold proteins. WDR62 is a ubiquitously expressed heat-sensitive 175-kDa protein that specifically associates with JNK but not with ERK and p38. Association between WDR62 and JNKs occurs in the absence and after either transient or persistent stimuli. WDR62 potentiates JNK kinase activity; however it inhibits AP-1 transcription through recruitment of JNK to a nonnuclear compartment. HEK-293T cells transfected with WDR62 display cytoplasmic granular localization. Overexpression of stress granule (SG) resident proteins results in the recruitment of endogenous WDR62 and activated JNK to SG. In addition, cell treatment with arsenite results in recruitment of WDR62 to SG and activated JNK to processing bodies (PB). JNK inhibition results in reduced number and size of SG and reduced size of PB. Collectively, we propose that JNK and WDR62 may regulate the dynamic interplay between polysomes SG and PB, thereby mediating mRNA fate after stress.

2007 ◽  
Vol 27 (20) ◽  
pp. 7273-7283 ◽  
Author(s):  
Sandra Blanco ◽  
Claudio Santos ◽  
Pedro A. Lazo

ABSTRACT Hypoxia represents a major stress that requires an immediate cellular response in which different signaling pathways participate. Hypoxia induces an increase in the activity of TAK1, an atypical mitogen-activated protein kinase kinase kinase (MAPKKK), which responds to oxidative stress by triggering cascades leading to the activation of c-Jun N-terminal kinase (JNK). JNK activation by hypoxia requires assembly with the JIP1 scaffold protein, which might also interact with other intracellular proteins that are less well known but that might modulate MAPK signaling. We report that TAK1 is able to form a stable complex with JIP1 and thus regulate the activation of JNK, which in turn determines the cellular stress response to hypoxia. This activation of TAK1-JIP1-JNK is suppressed by vaccinia-related kinase 2 (VRK2). VRK2A is able to interact with TAK1 by its C-terminal region, forming stable complexes. The kinase activity of VRK2 is not necessary for this interaction or the downregulation of AP1-dependent transcription. Furthermore, reduction of the endogenous VRK2 level with short hairpin RNA can increase the response induced by hypoxia, suggesting that the intracellular levels of VRK2 can determine the magnitude of this stress response.


2009 ◽  
Vol 20 (9) ◽  
pp. 2473-2485 ◽  
Author(s):  
Ryosuke Satoh ◽  
Takahiro Morita ◽  
Hirofumi Takada ◽  
Ayako Kita ◽  
Shunji Ishiwata ◽  
...  

Myosin II is an essential component of the actomyosin contractile ring and plays a crucial role in cytokinesis by generating the forces necessary for contraction of the actomyosin ring. Cdc4 is an essential myosin II light chain in fission yeast and is required for cytokinesis. In various eukaryotes, the phosphorylation of myosin is well documented as a primary means of activating myosin II, but little is known about the regulatory mechanisms of Cdc4. Here, we isolated Nrd1, an RNA-binding protein with RNA-recognition motifs, as a multicopy suppressor of cdc4 mutants. Notably, we demonstrated that Nrd1 binds and stabilizes Cdc4 mRNA, thereby suppressing the cytokinesis defects of the cdc4 mutants. Importantly, Pmk1 mitogen-activated protein kinase (MAPK) directly phosphorylates Nrd1, thereby negatively regulating the binding activity of Nrd1 to Cdc4 mRNA. Consistently, the inactivation of Pmk1 MAPK signaling, as well as Nrd1 overexpression, stabilized the Cdc4 mRNA level, thereby suppressing the cytokinesis defects associated with the cdc4 mutants. In addition, we demonstrated the cell cycle–dependent regulation of Pmk1/Nrd1 signaling. Together, our results indicate that Nrd1 plays a role in the regulation of Cdc4 mRNA stability; moreover, our study is the first to demonstrate the posttranscriptional regulation of myosin expression by MAPK signaling.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiong Wang ◽  
Run-zhu Guo ◽  
Li Ma ◽  
Qiao-yan Ding ◽  
Jun-hua Meng ◽  
...  

Prolactinomas are harmful to human health, and the clinical first-line treatment drug is bromocriptine. However, 20% prolactinomas patients did not respond to bromocriptine. Hordenine is an alkaloid separated from Fructus Hordei Germinatus, which showed significant antihyperprolactinemia activity in rats. The aim of this study was to explore the effect and mechanism of hordenine on prolactinomas in rats. The study used estradiol to induce prolactinomas, which caused the activation of the pituitary mitogen-activated protein kinase (MAPK) pathway in rats significantly. The treatment of hordenine restored estradiol, induced the overgrowth of pituitary gland, and reduced the prolactin (PRL) accumulation in the serum and pituitary gland of rats by blocking the MAPK (p38, ERK1/2, and JNK) activation and production of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The antiprolactinoma effect of hordenine was mediated by inhibiting the MAPK signaling pathway activation in rats.


2021 ◽  
Author(s):  
Olivia Vidal-Cruchez ◽  
Victoria J Nicolini ◽  
Tifenn Rete ◽  
Roger Rezzonico ◽  
Caroline Lacoux ◽  
...  

AbstractBackgroundOveractivation of the Mitogen-activated protein kinase (MAPK) pathway is a critical driver of many human cancers. However, therapies that target this pathway have only been effective in a few cancers, as cancers inevitably end up developing resistance. Puzzling observations have suggested that MAPK targeting in tumor fails because of an early compensatory RAS overexpression, but through unexplained mechanisms.MethodsLung, breast, and melanoma cancer cells were incubated with MEK inhibitors (MEKi). Kinetics of expression of KRAS, NRAS mRNA and proteins and processing bodies (PBs) proteins were followed overtime by immunoblot and confocal studies.ResultsHere, we identified a novel mechanism of drug tolerance for MEKi involving PBs essential proteins like DDX6 or LSM14A. MEKi promoted the translation of KRAS and NRAS oncogenes, which in turn triggered BRAF phosphorylation. This overexpression, which occurred in the absence of neo-transcription, depended on PBs dissolution as a source of RAS mRNA reservoir. In addition, in response to MEKi removal, we showed that the process was dynamic since the PBs quickly reformed, reducing MAPK signaling. These results underline a dynamic spatiotemporal negative feedback loop of MAPK signaling via RAS mRNA sequestration. Furthermore, in long-tolerant cells, we observed a LSM14A loss of expression that promoted a low PBs number phenotype together with strong KRAS and NRAS induction capacities.ConclusionsAltogether we describe here a new intricate mechanism involving PB, DDX6 and LSM14A in the translation regulation of essential cellular pathways that pave the way for future therapies altering PBs dissolution to improve cancer targeted-drug therapies.


2021 ◽  
Vol 7 (6) ◽  
pp. 482
Author(s):  
Elisa Gómez-Gil ◽  
Alejandro Franco ◽  
Beatriz Vázquez-Marín ◽  
Francisco Prieto-Ruiz ◽  
Armando Pérez-Díaz ◽  
...  

Mitogen activated protein kinase (MAPK) signaling pathways execute essential functions in eukaryotic organisms by transducing extracellular stimuli into adaptive cellular responses. In the fission yeast model Schizosaccharomyces pombe the cell integrity pathway (CIP) and its core effector, MAPK Pmk1, play a key role during regulation of cell integrity, cytokinesis, and ionic homeostasis. Schizosaccharomyces japonicus, another fission yeast species, shows remarkable differences with respect to S. pombe, including a robust yeast to hyphae dimorphism in response to environmental changes. We show that the CIP MAPK module architecture and its upstream regulators, PKC orthologs Pck1 and Pck2, are conserved in both fission yeast species. However, some of S. pombe’s CIP-related functions, such as cytokinetic control and response to glucose availability, are regulated differently in S. japonicus. Moreover, Pck1 and Pck2 antagonistically regulate S. japonicus hyphal differentiation through fine-tuning of Pmk1 activity. Chimeric MAPK-swapping experiments revealed that S. japonicus Pmk1 is fully functional in S. pombe, whereas S. pombe Pmk1 shows a limited ability to execute CIP functions and promote S. japonicus mycelial development. Our findings also suggest that a modified N-lobe domain secondary structure within S. japonicus Pmk1 has a major influence on the CIP signaling features of this evolutionarily diverged fission yeast.


2021 ◽  
Vol 7 (4) ◽  
pp. 256
Author(s):  
Shuyan Yang ◽  
Hongyi Zhou ◽  
Weihua Dai ◽  
Juan Xiong ◽  
Fusheng Chen

The effects of a static magnetic field (SMF) on Monascus ruber M7 (M. ruber M7) cultured on potato dextrose agar (PDA) plates under SMF treatment at different intensities (5, 10, and 30 mT) were investigated in this paper. The results revealed that, compared with the control (CK, no SMF treatment), the SMF at all tested intensities did not significantly influence the morphological characteristics of M. ruber M7, while the intracellular and extracellular Monascus pigments (MPs) and extracellular citrinin (CIT) of M. ruber M7 were increased at 10 and 30 mT SMF but there was no impact on the MPs and CIT at 5 mT SMF. The transcriptome data of M. ruber M7 cultured at 30 mT SMF on PDA for 3 and 7 d showed that the SMF could increase the transcriptional levels of some relative genes with the primary metabolism, including the carbohydrate metabolism, amino acid metabolism, and lipid metabolism, especially in the early growing period (3 d). SMF could also affect the transcriptional levels of the related genes to the biosynthetic pathways of MPs, CIT, and ergosterol, and improve the transcription of the relative genes in the mitogen-activated protein kinase (MAPK) signaling pathway of M. ruber M7. These findings provide insights into a comprehensive understanding of the effects of SMF on filamentous fungi.


2021 ◽  
Vol 22 (5) ◽  
pp. 2333
Author(s):  
Yulong Sun ◽  
Yuanyuan Kuang ◽  
Zhuo Zuo

In the process of exploring space, the astronaut’s body undergoes a series of physiological changes. At the level of cellular behavior, microgravity causes significant alterations, including bone loss, muscle atrophy, and cardiovascular deconditioning. At the level of gene expression, microgravity changes the expression of cytokines in many physiological processes, such as cell immunity, proliferation, and differentiation. At the level of signaling pathways, the mitogen-activated protein kinase (MAPK) signaling pathway participates in microgravity-induced immune malfunction. However, the mechanisms of these changes have not been fully elucidated. Recent studies suggest that the malfunction of macrophages is an important breakthrough for immune disorders in microgravity. As the first line of immune defense, macrophages play an essential role in maintaining homeostasis. They activate specific immune responses and participate in large numbers of physiological activities by presenting antigen and secreting cytokines. The purpose of this review is to summarize recent advances on the dysfunction of macrophages arisen from microgravity and to discuss the mechanisms of these abnormal responses. Hopefully, our work will contribute not only to the future exploration on the immune system in space, but also to the development of preventive and therapeutic drugs against the physiological consequences of spaceflight.


2019 ◽  
Vol 20 (10) ◽  
pp. 2490 ◽  
Author(s):  
Wen-Chung Huang ◽  
Chun-Hsun Huang ◽  
Sindy Hu ◽  
Hui-Ling Peng ◽  
Shu-Ju Wu

Atopic dermatitis (AD) is a recurrent allergic skin disease caused by genetic and environmental factors. Patients with AD may experience immune imbalance, increased levels of mast cells, immunoglobulin (Ig) E and pro-inflammatory factors (Cyclooxygenase, COX-2 and inducible NO synthase, iNOS). While spilanthol (SP) has anti-inflammatory and analgesic activities, its effect on AD remains to be explored. To develop a new means of SP, inflammation-related symptoms of AD were alleviated, and 2,4-dinitrochlorobenzene (DNCB) was used to induce AD-like skin lesions in BALB/c mice. Histopathological analysis was used to examine mast cells and eosinophils infiltration in AD-like skin lesions. The levels of IgE, IgG1 and IgG2a were measured by enzyme-linked immunosorbent assay (ELISA) kits. Western blot was used for analysis of the mitogen-activated protein kinase (MAPK) pathways and COX-2 and iNOS protein expression. Topical SP treatment reduced serum IgE and IgG2a levels and suppressed COX-2 and iNOS expression via blocked mitogen-activated protein kinase (MAPK) pathways in DNCB-induced AD-like lesions. Histopathological examination revealed that SP reduced epidermal thickness and collagen accumulation and inhibited mast cells and eosinophils infiltration into the AD-like lesions skin. These results indicate that SP may protect against AD skin lesions through inhibited MAPK signaling pathways and may diminish the infiltration of inflammatory cells to block allergic inflammation.


2021 ◽  
Vol 22 (8) ◽  
pp. 4211
Author(s):  
Yen-Tze Liu ◽  
Hsin-Yu Ho ◽  
Chia-Chieh Lin ◽  
Yi-Ching Chuang ◽  
Yu-Sheng Lo ◽  
...  

Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.


Author(s):  
Ahmad Ahmadzadeh ◽  
Saeid Shahrabi ◽  
Kaveh Jaseb ◽  
Fatemeh Norozi ◽  
Mohammad Shahjahani ◽  
...  

BRAF is a serine/threonine kinase with a regulatory role in the mitogen-activated protein kinase (MAPK) signaling pathway. A mutation in the RAF gene, especially in BRAF protein, leads to an increased stimulation of this cascade, causing uncontrolled cell division and development of malignancy. Several mutations have been observed in the gene coding for this protein in a variety of human malignancies, including hairy cell leukemia (HCL). BRAF V600E is the most common mutation reported in exon15 of BRAF, which is observed in almost all cases of classic HCL, but it is negative in other B-cell malignancies, including the HCL variant. Therefore it can be used as a marker to differentiate between these B-cell disorders. We also discuss the interaction between miRNAs and signaling pathways, including MAPK, in HCL. When this mutation is present, the use of BRAF protein inhibitors may represent an effective treatment. In this review we have evaluated the role of the mutation of the BRAF gene in the pathogenesis and progression of HCL.


Sign in / Sign up

Export Citation Format

Share Document