Intercellular mitochondria transfer: a new perspective for the treatment of metabolic diseases

Author(s):  
Xiaobo Hu ◽  
Tingting Duan ◽  
Zhuan Wu ◽  
Yuqing Xiong ◽  
Zhaohui Cao
2016 ◽  
Vol 27 (12) ◽  
pp. 893-903 ◽  
Author(s):  
Maria Conte ◽  
Claudio Franceschi ◽  
Marco Sandri ◽  
Stefano Salvioli

2019 ◽  
Vol 20 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Sonia Fernández-Veledo ◽  
Joan Vendrell

Abstract There is now a wealth of evidence showing that communication between microbiota and the host is critical to sustain the vital functions of the healthy host, and disruptions of this homeostatic coexistence are known to be associated with a range of diseases including obesity and type 2 diabetes. Microbiota-derived metabolites act both as nutrients and as messenger molecules and can signal to distant organs in the body to shape host pathophysiology. In this review, we provide a new perspective on succinate as a gut microbiota-derived metabolite with a key role governing intestinal homeostasis and energy metabolism. Thus, succinate is not merely a major intermediary of the TCA traditionally considered as an extracellular danger signal in the host, but also a by-product of some bacteria and a primary cross-feeding metabolite between gut resident microbes. In addition to maintain a healthy microbiome, specific functions of microbiota-derived succinate in peripheral tissues regulating host nutrient metabolism should not be rule out. Indeed, recent research point to some probiotic interventions directed to modulate succinate levels in the intestinal lumen, as a new microbiota-based therapies to treat obesity and related co-morbidities. While further research is essential, a large body of evidence point to succinate as a new strategic mediator in the microbiota-host cross-talk, which might provide the basis for new therapeutically approaches in a near future.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1821 ◽  
Author(s):  
Marion M. Chan ◽  
Xiaofeng Yang ◽  
Hong Wang ◽  
Fatma Saaoud ◽  
Yu Sun ◽  
...  

Diet and microbiota each have a direct impact on many chronic, inflammatory, and metabolic diseases. As the field develops, a new perspective is emerging. The effects of diet may depend on the microbiota composition of the intestine. A diet that is rich in choline, red meat, dairy, or egg may promote the growth, or change the composition, of microbial species. The microbiota, in turn, may produce metabolites that increase the risk of cardiovascular disease. This article reviews our current understanding of the effects of the molecule trimethylamine-N-oxide (TMAO) obtained from food or produced by the microbiota. We review the mechanisms of actions of TMAO, and studies that associate it with cardiovascular and chronic kidney diseases. We introduce a novel concept: TMAO is one among a group of selective uremic toxins that may rise to high levels in the circulation or accumulate in various organs. Based on this information, we evaluate how TMAO may harm, by exacerbating inflammation, or may protect, by attenuating amyloid formation, in autoimmune diseases such as rheumatoid arthritis.


Author(s):  
S. Laoussadi ◽  
A. Kahan ◽  
G. Aubouy ◽  
F. Delbarre

Several patients with Fabry's, Gaucher's diseases and hyperlipoproteinemia type II and with arthropatic manifestations were observed.As no histological explanation for these symptoms was available,an ultrastructural study of synovial tissue was done to establish an anatomoclinical relation.Material and Methods :synovial membrane samples were obtained by needle biopsies of the knee from three patients with arthropatic manifestations of each disease.They were fixed in 5% glutaraldehyde, postfixed in 1% osmium tetraoxyde and embedded in Epon 812. Thin sections coloured by uranyl acetate and lead citrate were observed with an Elmiskop I Siemens electron microscope.Two important phenomena were observed in synovial tissue:Specific patterns of each lipid storage disease,which are now well known.In all the three metabolic diseases, hydroxyapatite-like crystals were found. They are characterized by their intramitochondrial localization, without any relation with cristae,an anarchic disposition and a mean size of 550 A.Crystals may be found also free in the cytoplasm of synoviocytes Some micrographs suggest an evolution in four steps :a. mitochondria with only a few microcrystalsb. mitochondria stuffed with these structuresc. disruption of mitochondria membranesd. microcrystals appear free in the cytoplasm


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


2010 ◽  
Vol 34 (8) ◽  
pp. S70-S70
Author(s):  
Xiaoping WEI ◽  
Lan LIU ◽  
Jie CHEN ◽  
Youxue LIU ◽  
Yang BI ◽  
...  
Keyword(s):  

2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


2019 ◽  
Vol 133 (22) ◽  
pp. 2317-2327 ◽  
Author(s):  
Nicolás Gómez-Banoy ◽  
James C. Lo

Abstract The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the “classic” adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose–pancreatic β cell axis.


1979 ◽  
Vol 10 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Sallie W. Hillard ◽  
Laura P. Goepfert

This paper describes the concept of teaching articulation through words which have inherent meaning to a child’s life experience, such as a semantically potent word approach. The approach was used with six children. Comparison of pre/post remediation measures indicated that it has promise as a technique for facilitating increased correct phoneme production.


Sign in / Sign up

Export Citation Format

Share Document