scholarly journals The TGFβ superfamily in cardiac dysfunction

2018 ◽  
Vol 50 (4) ◽  
pp. 323-335 ◽  
Author(s):  
Jian Wu ◽  
Olan Jackson-Weaver ◽  
Jian Xu

Abstract TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.

2021 ◽  
Author(s):  
Athanasios Stavropoulos ◽  
Georgios Divolis ◽  
Maria Manioudaki ◽  
Ariana Gavriil ◽  
Ismini Kloukina ◽  
...  

Transforming Growth Factor-βs (TGFβs)/Activins and Bone Morphogenetic Proteins (BMPs) have been implicated in numerous aspects of hepatic pathophysiology. However, the way by which hepatocytes integrate and decode the interplay between the TGFβ/Activin and BMP branches in health and disease is still not fully understood. To address this, TGFβ/BMP Smad-responsive double transgenic reporter mice were generated and utilized to map patterns of TGFβ- and/or BMP-pathway activation during acetaminophen-induced liver injury. TGFββ signaling was blocked either pharmacologically or by Smad7 over-expression and the transcriptomes of canonical TGFβ- and/or BMP4-treated hepatospheres and Smad7-treated livers were analyzed to highlight TGFβ-superfamily-regulated pathways and processes. Acetaminophen administration led to dynamically evolving, stage- and context-specific, patterns of hepatic TGFββ/Activin and BMP-reporter expression. TGFβ-superfamily signaling was activated in an autophagy prone zone at the borders between healthy and injured tissue. Inhibition of TGFβ-superfamily signaling attenuated autophagy, exacerbated liver histopathology, and finally led to accelerated tissue-recovery. Hallmarks of this process were the paraptosis-like cell death and the attenuation of immune and reparatory cell responses. Transcriptomic analysis highlighted autophagy as a prominent TGFβ1- and BMP4-regulated process and recognized Trp53inp2 as the top TGFβ-superfamily-regulated autophagy-related gene. Collectively, these findings implicate the coordinated activation of both canonical TGFβ-superfamily signalling branches in balancing autophagic response and tissue-reparatory and -regenerative processes upon acetaminophen-induced hepatotoxicity, highlighting opportunities and putative risks associated with their targeting for treatment of hepatic diseases.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Rebecca L Jones ◽  
Chelsea Stoikos ◽  
Jock K Findlay ◽  
Lois A Salamonsen

Transforming growth factor β (TGFβ) superfamily members are closely associated with tissue remodelling events and reproductive processes. This review summarises the current state of knowledge regarding the expression and actions of TGFβ superfamily members in the uterus, during the menstrual cycle and establishment of pregnancy. TGFβs and activin β subunits are abundantly expressed in the endometrium, where roles in preparation events for implantation have been delineated, particularly in promoting decidualisation of endometrial stroma. These growth factors are also expressed by epithelial glands and secreted into uterine fluid, where interactions with preimplantation embryos are anticipated. Knockout models and embryo culture experiments implicate activins, TGFβs, nodal and bone morphogenetic proteins (BMPs) in promoting pre- and post-implantation embryo development. TGFβ superfamily members may therefore be important in the maternal support of embryo development. Following implantation, invasion of the decidua by fetal trophoblasts is tightly modulated. Activin promotes, whilst TGFβ and macrophage inhibitory cytokine-1 (MIC-1) inhibit, trophoblast migration in vitro, suggesting the relative balance of TGFβ superfamily members participate in modulating the extent of decidual invasion. Activins and TGFβs have similar opposing actions in regulating placental hormone production. Inhibins and activins are produced by the placenta throughout pregnancy, and have explored as a potential markers in maternal serum for pregnancy and placental pathologies, including miscarriage, Down’s syndrome and pre-eclampsia. Finally, additional roles in immunomodulation at the materno-fetal interface, and in endometrial inflammatory events associated with menstruation and repair, are discussed.


2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


2006 ◽  
Vol 13 (4) ◽  
pp. 141-143 ◽  
Author(s):  
T. Hahn ◽  
Emmanuel Akporiaye

Human tumours have evolved intricate mechanisms to evade the immune system, either by avoiding recognition or by inhibiting and eliminating immune cells. [...]


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A528-A528
Author(s):  
Lin Ma ◽  
Jian-Hua Mao ◽  
Mary Helen Barcellos-Hoff ◽  
Jade Moore

BackgroundCheckpoint inhibitors can induce robust and durable responses in a subset of patients. Extending this benefit to more patients could be facilitated by better understanding of how interacts with immune cells with the tumor microenvironment, which is a critical barrier to control both local and systemic disease. The composition and pattern of the immune infiltrate associates with the likelihood of response to immunotherapy. Inflamed tumors that exhibit a brisk immune cell infiltrate are responsive, while those in which immune cells are completely or partially excluded are not. Transforming growth factor β (TGFβ) is immunosuppressive and associated with the immune excluded phenotype.MethodsUsing an immune competent mammary tumor derived transplant (mTDT) model recently developed in our lab, exhibits inflamed, excluded or deserts immune infiltrate phenotypes based on localization of CD8 lymphocytes. Using whole transcriptome deep sequencing, cytof, and PET-CT imaging, we evaluated the tumor, microenvironment, and immune pathway activation among immune infiltrate phenotypes.ResultsThree distinct inflamed tumors phenotypes were identified: ‘classically’ inflamed characterized by pathway evidence of increased CD8+ T cells and decreased PD-L1 expression, inflamed tumors with pathways indicative of neovascularization and STAT3 signaling and reduced T cell mobilization, and an inflamed tumor with increased immunosuppressive myeloid phenotypes. Excluded tumors were characterized by TGFβ gene expression and pro-inflammatory cytokine signaling (e.g. TNFα, IL1β), associated with decreased leukocytes homing and increased immune cell death of cells. We visualized and quantified TGFβ activity using PET-CT imaging of 89Zr-fresolimumab, a TGFβ neutralizing antibody. TGFβ activity was significantly increased in excluded tumors compared to inflamed or desert tumors, which was supported by quantitative pathology (Perkin Elmer) of its canonical signaling target, phosphorylated SMAD2 (pSMAD2). pSMAD2 was positively correlated with PD-L1 expression in the stroma of excluded tumors. In contrast, in inflamed tumors, TGFβ activity positively correlated with increased F4/80 positive macrophages and negatively correlated with expression of PD-L1. CyTOF analysis of tumor and spleen immune phenotypes revealed increased trafficking of myeloid cells in mice bearing inflamed tumors compared to excluded and deserts.ConclusionsThe immunocompetent mTDT provides a model that bridges the gap between the immune landscape and tumor microenvironment. Integration of these high-dimensional data with further studies of response to immunotherapies will help to identify tumor features that favor response to treatment or the means to convert those that are unresponsive.


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Claire Glister ◽  
Leanne Satchell ◽  
Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we comparedex vivoexpression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin orFSHRmRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Focaroli ◽  
Gabriella Teti ◽  
Viviana Salvatore ◽  
Isabella Orienti ◽  
Mirella Falconi

Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes thein vitrobehavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yan He ◽  
Hongyan Qian ◽  
Yuan Liu ◽  
Lihua Duan ◽  
Yan Li ◽  
...  

Regulatory B cells (Bregs), a newly described subset of B cells, have been proved to play a suppressive role in immune system. Bregs can inhibit other immune cells through cytokines secretion and antigen presentation, which give them the role in the pathogenesis of autoimmune diseases and cancers. There are no clear criteria to identify Bregs; different markers were used in the different experimental conditions. Massive researches had described the functions of immune cells such as regulatory T cells (Tregs), dendritic cells (DCs), and B cells in the autoimmune disorder diseases and cancers. More and more researches focused on the roles of Bregs and the cytokines such as Interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) secreted by Bregs. The aim of this review is to summarize the characteristics of Bregs and the roles of Bregs in cancer.


Sign in / Sign up

Export Citation Format

Share Document