Mapping cell-to-cell mitochondria transfer in obesity using high-dimensional spectral flow cytometry

2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S3-S4
Author(s):  
Nicholas Borcherding ◽  
John Moley ◽  
Rachael Field ◽  
Jonathan R Brestoff

Abstract Obesity is a metabolic disease that promotes the development of a number of other pathologies. Despite its high disease burden, the underlying pathophysiology of obesity is poorly understood. Emerging research has indicated that adipocytes transfer their mitochondria to macrophages in white adipose tissue as a mechanism of cell-to-cell communication and that this process is impaired in obesity. However, the diversity of intercellular mitochondria transfer axes that occurs in adipose and its regulation in obesity are not known. Here, we utilized 31-color spectral flow cytometry of adipocyte-specific mitochondria reporter (MitoFat) mice to comprehensively analyze intercellular mitochondria transfer from adipocytes to other cell types in white, beige, and brown adipose tissues. Employing manifold machine learning, we generated reference clusters of cells in 5-month (young) and 20-month-old (aged) MitoFat mice fed a normal chow diet (low fat diet). Using the reference clusters and manifold, we then mapped differences in immune cell populations using nearest neighbor search approximations in MitoFat mice fed normal chow, high-fat diet (HFD), high-fat diet with low palmitate (LP-HFD). The degree of mitochondria transfer from adipocytes to each of the various cell clusters was determined for each tissue and for each condition. We observed that adipocytes transfer their mitochondria to a wide range of immune cell populations, most notably macrophages. Although aged mice develop obesity, surprisingly they do not exhibit decreased mitochondria transfer from adipocytes to macrophages in vivo in white, beige, or brown adipose tissue. In contrast, young mice fed a HFD highly enriched in palmitate exhibit obesity and markedly reduced mitochondria transfer from adipocytes to macrophages. The decrease in mitochondria transfer was largely ameliorated by the replacement of palmitate with medium chain fatty acids, suggesting a potential direct dietary mechanism in the alteration of mitochondria transfer. Overall, the 31-color quantification increased granularity, allowing us to quantify differences in immune populations and mitochondria transfer by tissue, age, and diet. Similar machine-learning approaches could be used to investigate both basic biological and clinical questions by effectively reducing dimensions, mitigating batch effect, and enabling comparisons across different tissues, timepoints, or conditions.

2004 ◽  
Vol 286 (6) ◽  
pp. E891-E895 ◽  
Author(s):  
Kamal Rahmouni ◽  
Allyn L. Mark ◽  
William G. Haynes ◽  
Curt D. Sigmund

Adipose tissue represents an important source of angiotensinogen (AGT). We investigated the effect of obesity induced by a high-fat diet on the expression of mouse (mAGT) and human AGT (hAGT) genes in liver, kidney, and heart and different adipose depots in normal mice (C57BL/6J), and in transgenic mice expressing the hAGT gene under the control of its own promoter. Mice were fed a high-fat diet (45% kcal) or normal chow (10% kcal) for 10 and 20 wk. The expression of mAGT and hAGT mRNA was quantified using an RNAse protection assay. Mice on the high-fat diet exhibited increased weight, fat mass, and plasma leptin. Expression of mAGT or hAGT genes was not affected by high-fat diet in nonadipose tissues, brown adipose tissue, or subcutaneous white fat. In contrast, high-fat diet increased both mAGT and hAGT gene expression in visceral adipose depots (omental, reproductive, and perirenal fat). Thus obesity-induced by a high-fat diet is associated with a tissue-specific increased expression of both mouse and human AGT genes in intra-abdominal adipose tissue. Our findings also suggest that 1.2 kb of regulatory sequences present in the hAGT transgene are sufficient to transcriptionally respond to a high-fat diet in an adipose-specific and depot-specific manner.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1681 ◽  
Author(s):  
Jihong Zhou ◽  
Limin Mao ◽  
Ping Xu ◽  
Yuefei Wang

Obesity is an escalating global epidemic caused by an imbalance between energy intake and expenditure. (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been reported to be conducive to preventing obesity and alleviating obesity-related chronic diseases. However, the role of EGCG in energy metabolism disorders and central nervous system dysfunction induced by a high-fat diet (HFD) remains to be elucidated. The aim of this study was to evaluate the effects of EGCG on brown adipose tissue (BAT) thermogenesis and neuroinflammation in HFD-induced obese C57BL/6J mice. Mice were randomly divided into four groups with different diets: normal chow diet (NCD), normal chow diet supplemented with 1% EGCG (NCD + EGCG), high-fat diet (HFD), and high-fat diet supplemented with 1% EGCG (HFD + EGCG). Investigations based on a four-week experiment were carried out including the BAT activity, energy consumption, mRNA expression of major inflammatory cytokines in the hypothalamus, nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) phosphorylation, and immunofluorescence staining of microglial marker Iba1 in hypothalamic arcuate nucleus (ARC). Experimental results demonstrated that dietary supplementation of EGCG significantly inhibited HFD-induced obesity by enhancing BAT thermogenesis, and attenuated the hypothalamic inflammation and microglia overactivation by regulating the NF-κB and STAT3 signaling pathways.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 222-OR
Author(s):  
MICHAEL J. NASH ◽  
TAYLOR K. SODERBORG ◽  
RACHEL C. JANSSEN ◽  
ERIC M. PIETRAS ◽  
JACOB E. FRIEDMAN

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ziyi Zhang ◽  
Xiaoyu Chen ◽  
Yuh Jiun Loh ◽  
Xin Yang ◽  
Chenhong Zhang

Abstract Background Calorie restriction (CR) and intermittent fasting (IF) can promote metabolic health through a process that is partially mediated by gut microbiota modulation. To compare the effects of CR and IF with different dietary structures on metabolic health and the gut microbiota, we performed an experiment in which mice were subjected to a CR or IF regimen and an additional IF control (IFCtrl) group whose total energy intake was not different from that of the CR group was included. Each regimen was included for normal chow and high-fat diet. Results We showed that in normal-chow mice, the IFCtrl regimen had similar positive effects on glucose and lipid metabolism as the CR regimen, but the IF regimen showed almost no influence compared to the outcomes observed in the ad libitum group. IF also resulted in improvements, but the effects were less marked than those associate with CR and IFCtrl when the mice were fed a high-fat diet. Moreover, CR created a stable and unique gut microbial community, while the gut microbiota shaped by IF exhibited dynamic changes in fasting-refeeding cycles. At the end of each cycle, the gut microbiota of the IFCtrl mice was similar to that of the CR mice, and the gut microbiota of the IF mice was similar to that of the ad libitum group. When the abundance of Lactobacillus murinus OTU2 was high, the corresponding metabolic phenotype was improved regardless of eating pattern and dietary structure, which might be one of the key bacterial groups in the gut microbiota that is positively correlated with metabolic amelioration. Conclusion There are interactions among the amount of food intake, the diet structure, and the fasting time on metabolic health. The structure and composition of gut microbiota modified by dietary regimens might contribute to the beneficial effects on the host metabolism.


2020 ◽  
Vol 8 (6) ◽  
pp. 860 ◽  
Author(s):  
Yinzhao Zhong ◽  
Bo Song ◽  
Changbing Zheng ◽  
Shiyu Zhang ◽  
Zhaoming Yan ◽  
...  

Here, we investigated the roles and mechanisms of flavonoids from mulberry leaves (FML) on lipid metabolism in high fat diet (HFD)-fed mice. ICR mice were fed either a control diet (Con) or HFD with or without FML (240 mg/kg/day) by oral gavage for six weeks. FML administration improved lipid accumulation, alleviated liver steatosis and the whitening of brown adipose tissue, and improved gut microbiota composition in HFD-fed mice. Microbiota transplantation from FML-treated mice alleviated HFD-induced lipid metabolic disorders. Moreover, FML administration restored the production of acetic acid in HFD-fed mice. Correlation analysis identified a significant correlation between the relative abundances of Bacteroidetes and the production of acetic acid, and between the production of acetic acid and the weight of selected adipose tissues. Overall, our results demonstrated that in HFD-fed mice, the lipid metabolism improvement induced by FML administration might be mediated by gut microbiota, especially Bacteroidetes-triggered acetic acid production.


2014 ◽  
Vol 221 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Gustavo W Fernandes ◽  
Cintia B Ueta ◽  
Tatiane L Fonseca ◽  
Cecilia H A Gouveia ◽  
Carmen L Lancellotti ◽  
...  

Three types of beta adrenergic receptors (ARβ1–3) mediate the sympathetic activation of brown adipose tissue (BAT), the key thermogenic site for mice which is also present in adult humans. In this study, we evaluated adaptive thermogenesis and metabolic profile of a mouse withArβ2knockout (ARβ2KO). At room temperature, ARβ2KO mice have normal core temperature and, upon acute cold exposure (4 °C for 4 h), ARβ2KO mice accelerate energy expenditure normally and attempt to maintain body temperature. ARβ2KO mice also exhibited normal interscapular BAT thermal profiles during a 30-min infusion of norepinephrine or dobutamine, possibly due to marked elevation of interscapular BAT (iBAT) and ofArβ1, andArβ3mRNA levels. In addition, ARβ2KO mice exhibit similar body weight, adiposity, fasting plasma glucose, cholesterol, and triglycerides when compared with WT controls, but exhibit marked fasting hyperinsulinemia and elevation in hepaticPepck(Pck1) mRNA levels. The animals were fed a high-fat diet (40% fat) for 6 weeks, ARβ2KO mice doubled their caloric intake, accelerated energy expenditure, and inducedUcp1expression in a manner similar to WT controls, exhibiting a similar body weight gain and increase in the size of white adipocytes to the WT controls. However, ARβ2KO mice maintain fasting hyperglycemia as compared with WT controls despite very elevated insulin levels, but similar degrees of liver steatosis and hyperlipidemia. In conclusion, inactivation of the ARβ2KO pathway preserves cold- and diet-induced adaptive thermogenesis but disrupts glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion. Feeding on a high-fat diet worsens the metabolic imbalance, with significant fasting hyperglycemia but similar liver structure and lipid profile to the WT controls.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


1987 ◽  
Vol 253 (2) ◽  
pp. E149-E157
Author(s):  
H. K. Kim ◽  
D. R. Romsos

Adrenalectomy prevents development of obesity in ob/ob mice fed high-carbohydrate stock diets partly by stimulating the low thermogenic capacity of their brown adipose tissue (BAT). Adrenalectomy, however, fails to prevent development of obesity in ob/ob mice fed a high-fat diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed a high-fat diet were thus examined. ob/ob mice fed the high-fat diet developed gross obesity despite normal BAT metabolism, as assessed by rates of norepinephrine turnover in BAT, GDP binding to BAT mitochondria, and GDP-inhibitable, chloride-induced mitochondrial swelling. Adrenalectomy failed to arrest the development of obesity or to influence BAT metabolism in ob/ob mice fed the high-fat diet. Development of obesity in ob/ob mice fed a high-fat diet is not associated with low thermogenic capacity of BAT or with adrenal secretions, as it is in ob/ob mice fed high-carbohydrate stock diets.


2017 ◽  
Vol 114 (2) ◽  
pp. 312-323 ◽  
Author(s):  
Sebastian Steven ◽  
Mobin Dib ◽  
Michael Hausding ◽  
Fatemeh Kashani ◽  
Matthias Oelze ◽  
...  

Abstract Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L−/− mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery. Conclusion CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3607
Author(s):  
Bojan Stojnić ◽  
Alba Serrano ◽  
Lana Sušak ◽  
Andreu Palou ◽  
M. Luisa Bonet ◽  
...  

Anti-obesity activity has been reported for beta-carotene (BC) supplementation at high doses and metformin (MET). We studied whether BC treatment at a closer to dietary dose and MET treatment at a lower than therapeutic dose are effective in ameliorating unwanted effects of an obesogenic diet and whether their combination is advantageous. Obesity-prone mice were challenged with a high-fat diet (HFD, 45% energy as fat) for 4 weeks while receiving a placebo or being treated orally with BC (3 mg/kg/day), MET (100 mg/kg/day), or their combination (BC+MET); a fifth group received a placebo and was kept on a normal-fat diet (10% energy as fat). HFD-induced increases in body weight gain and inguinal white adipose tissue (WAT) adipocyte size were attenuated maximally or selectively in the BC+MET group, in which a redistribution towards smaller adipocytes was noted. Cumulative energy intake was unaffected, yet results suggested increased systemic energy expenditure and brown adipose tissue activation in the treated groups. Unwanted effects of HFD on glucose control and insulin sensitivity were attenuated in the treated groups, especially BC and BC+MET, in which hepatic lipid content was also decreased. Transcriptional analyses suggested effects on skeletal muscle and WAT metabolism could contribute to better responses to the HFD, especially in the MET and BC+MET groups. The results support the benefits of the BC+MET cotreatment.


Sign in / Sign up

Export Citation Format

Share Document