scholarly journals Control of Insects on Lentils, 1997

1998 ◽  
Vol 23 (1) ◽  
pp. 249-249
Author(s):  
D. E. Bragg ◽  
J. W. Burns

Abstract Plots were established 12 May near Albion, WA, on the Mills-Farr farm in a RCBD with 4 replicates of 6 X 10 ft. each. Seven insecticide treatments and an untreated check were used, with Gaucho 480 applied as a seed treatment at 0.5 and 1.0 oz (AI)/cwt. Foliar treatments were applied at the appearance of PA ca. 40-DAE using a CO2-powered backpack sprayer at 20 gpa at 20 psi. All treatments were rated by counts of PA per 20 cm terminal stem 4 per replicate at pre-treatment, PrCt, 2, 5, 7, 10, and 15 DAT. Counts of (TPB) damaged lentils/100 lentil sample per replicate were made at harvest. Yield data in oz lentils per replicate were collected by threshing through a stationary thresher.

1997 ◽  
Vol 22 (1) ◽  
pp. 206-206
Author(s):  
D. E. Bragg

Abstract Gaucho 75 ST at a rate of 12 oz Al/cwt was applied as seed treatment. Canola was seeded with a small plot drill on 30 May at 6 lb/acre, with the Gaucho treatment and an untreated check in a RCBD 4 replicated plot consisting of 6 X 20 ft replicates. At 80% dark seed, the Canola was swathed to dry. Counts of CSPW exit holes per 100 pods were made per replicate. Samples of m2 size per replicate were threshed in a stationary thresher to obtain yield data.


1998 ◽  
Vol 23 (1) ◽  
pp. 184-185
Author(s):  
D. E. Bragg

Abstract Plots were established in a RCBD with 4 replicates of 20 X 30 ft at the USDA-ARS Western Regional Plant Materials Introduction Center at Central Ferry, WA on 10 Oct. Treatments were made at full bloom with a CO2 powered backpack sprayer at 20 gpa at 20 psi on 21 May except for Gaucho 75 ST applied as a seed treatment at planting. All sprayed insecticides were buffered to pH 5.0. Treatments were evaluated for pre-treatment count 215 DAE, 7 DAT (222 DAE), 12 DAT (227 DAE), and 25 DAT (250 DAE) by counting the number of CA colonies per m2 (6.6 linear ft of row) with mean number of CA per colony. CSPW counts were made on evaluation dates with 180° sweeps with a 14-inch sweep net. Counts of CSPW exit holes per 100 pods per replicate were made at harvest, and yield data were collected.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1161
Author(s):  
Roland Gerhards ◽  
Fructueuse N. Ouidoh ◽  
André Adjogboto ◽  
Vodéa Armand Pascal Avohou ◽  
Berteulot Latus Sètondji Dossounon ◽  
...  

Although clear evidence for benefits in crop production is partly missing, several natural compounds and microorganisms have been introduced to the market as biostimulants. They are supposed to enhance nutrient efficiency and availability in the rhizosphere, reduce abiotic stress, and improve crop quality parameters. Biostimulants often derive from natural compounds, such as microorganisms, algae, and plant extracts. In this study, the commercial plant extract-based biostimulant ComCat® was tested in two field experiments with maize in the communities of Banikoara and Matéri in Northern Benin and six pot experiments (four with maize and two with winter barley) at the University of Hohenheim in Germany. Maize was grown under nutrient deficiency, drought, and weed competition, and winter barley was stressed by the herbicide Luximo (cinmethylin). ComCat® was applied at half, full, and double the recommended field rate (50, 100, and 200 g ha−1) on the stressed and unstressed control plants as leaf or seed treatment. The experiments were conducted in randomized complete block designs with four replications. The above-ground biomass and yield data of one experiment in Benin were collected. The biostimulant did not promote maize and winter barley biomass production of the unstressed plants. When exposed to stress, ComCat@ resulted only in one out of eight experiments in higher barley biomass compared to the stressed treatment without ComCat® application. There was a reduced phytotoxic effect of cinmethylin after seed treatment with ComCat®. Crop response to ComCat® was independent of the application rate. Basic and applied studies are needed to investigate the response of crops to biostimulants and their mechanisms of action in the plants before they should be used in practical farming.


2003 ◽  
Vol 83 (4) ◽  
pp. 729-735 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
P. Hucl

An effective dormancy-breaking method may be of interest to wheat (Triticum aestivum L.) breeders selecting for increased seed dormancy prior to advancing their populations in greenhouse grow-outs. The objective of this study was to identify an effective pre-treatment for breaking dormancy in wheat that did not result in seedling etiolation. In 2000, eight dormant (W98616, line 211, EMDR-4, EMDR-9, EMDR-14, RL4137, Columbus, and AC Domain) and one nondormant line (Roblin) were grown at two locations in Saskatchewan. Seeds were: (i) stored for zero to 21 wks at 24°C before incubating at 20°C for 7 d; (ii) incubated at 5, 10, 15, 20, and 25°C for 14 d; and (iii) treated with gibberellic acid (GA3) (0.0006 and 0.0014 M), potassium nitrate (KNO3) (0.01 and 0.02 M), chilling, heating, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 before incubating at 10°C for 14 d. Seedling growth was observed in a duplicated growth chamber experiment. Seedling length, first inter-node length, and biomass yield data were collected from plants grown from seeds treated with four effective pretreatments. Data were subjected to an ANOVA. Six to 18 weeks of storage at 24°C were required to break the dormancy (≥ 95% germination) in dormant genotypes. Incubation at 10°C was the most effective temperature for promoting germination in dormant seeds after 10d of testing. Four pre-treatments including 0.0006 M GA3, 0.0014 M GA3, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 led to ≥ 95% germination within 10 d of testing. Only GA3 treatments were associated with etiolated seedling growth. Heating with 0.01 M KNO3 or chilling with 0.01 M KNO3, applied before incubating at 10°C in darkness, may be of interest to breeders selecting for increased dormancy before advancing breeding populations in greenhouse grow-outs. Key words: Triticum, dormancy, nitrate, chilling, heating, etiolated seedling


2021 ◽  
Vol 883 (1) ◽  
pp. 012052
Author(s):  
N Herawati ◽  
A R Aisah ◽  
I Mardian ◽  
B N Hidayah ◽  
B T R Erawati

Abstract Plant growth is influenced by seed quality. Seeds need to be treated to prevent pest and disease disorders or to increase seed germination. Soybean planting was carried out in this study by the treatment of varieties and seed pre-treatment application before planting. The study aimed to measure the growth and yield of soybeans by varieties and seed treatment before planting, carried out in the Village of Nggembe, District of Bolo, Bima Regency. The study used factorial randomized block design with two factors. The first factor was soybean varieties consisting of two levels, namely Devon and Dena varieties, and the second factor was the application of pre-planting seed treatments consisting of four levels namely Cruiser, Marshall, Agrisoy, and without seed treatment, each treatment was repeated three times. Observations were made on the performance of agronomic crops and soybean yields. The results showed that the treatment of soybean varieties and the application of seed treatment had a significant influence on plant height and soybean productivity, and both treatments had interactions on parameters of plant height, number of filled pods, weight of 100 seeds, and soybean productivity with the best results successively produced by a combination of Devon-Control, Devon-Marshall, Devon-Agrisoy, and Dena-Cruiser.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1364-1370 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Erik J. Wenninger ◽  
Imad A. Eujayl

Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield-limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. The length of efficacy of these insecticides is poorly understood; therefore, field experiments were conducted with the seed treatment Poncho Beta (clothianidin at 60 g a.i. + beta-cyfluthrin at 8 g a.i. per 100,000 seed) and foliar treatment Asana (esfenvalerate at 55.48 g a.i./ha). A series of four experiments at different locations in the same field were conducted in 2014 and repeated in a neighboring field in 2015, with four treatments (untreated check, Poncho Beta, Asana, and Poncho Beta + Asana) which were arranged in a randomized complete block design with eight replications. To evaluate efficacy, viruliferous (contain BCTV strains) beet leafhoppers were released 8, 9, 10, or 11weeks after planting for each experiment, which corresponded to 1, 2, 3, and 4 weeks after Asana application. Over both years, in 30 of 32 observation dates for treatments with Poncho Beta and 14 of 16 observation dates for Asana, visual curly top ratings decreased an average of 41 and 24%, respectively, with insecticide treatments compared with the untreated check. Over both years, in eight of eight experiments for treatments with Poncho Beta and six of eight experiments for Asana, root yields increased an average of 39 and 32%, respectively, with treatment compared with the untreated check. Over both years, the Poncho Beta treatments increased estimated recoverable sucrose (ERS) yield by 75% compared with the untreated check for weeks 8 and 9. By week 10, only the Poncho Beta + Asana treatment led to increases in ERS in both years, while the influence of increasing host resistance may have made other treatments more difficult to separate. When considering curly top symptoms, root yield, and ERS among all weeks and years, there was a tendency for the insecticides in the Poncho Beta + Asana treatment to complement each other to improve efficacy.


2021 ◽  
Vol 12 (5) ◽  
pp. 286-294
Author(s):  
Poornata Jena ◽  
◽  
N. K. Sahoo ◽  
J. K. Mahalik ◽  
◽  
...  

A pot experiment was carried out in the net house of Department of Nematology, OUAT, Bhubaneswar, Odisha, India during June to August, 2017 on the application of oilcakes (mustard cake and neem cake) and bio-agents (Trichoderma viride, Glomus fasciculatum, Rhizobium leguminosarum) each alone and in combination for the management of root knot nematode (Meloidogyne incognita) in green gram. Result of the experiment indicated that soil application of mustard or neem cake @ 50 g m-2 with AM fungus (Glomus fasciculatum) @ 5 g m-² and seed treatment of Rhizobium @ 25 g kg-1 of green gram seed declined the root knot nematode population, number of galls plant-1, number of eggmass plant-1and root knot index with corresponding increase of plant growth parameters and chlorophyll content in green gram plant as compared to other treatments and untreated check. But integration of mustard cake @ 50 g m-2 at 2 weeks prior to sowing with AM fungus @ 5 g m-2 at 10 days before sowing and seed treatment of Rhizobium @ 25 g kg-1 green gram seed exhibited the lowest M. incognita population 200 cc soil-1 (153.33 J2), number of galls plant-1 (7.0), number of eggmass plant-1 (2.0) and root knot index (2.0) reflecting enhancement of plant growth parameters, number of pods (206.67%), number of nodules (691.17%) over untreated check. This integrated management module also recorded maximum increase in the availability of NPK content in soil and chlorophyll content as compared to other treatments.


2011 ◽  
Vol 50 (No. 11) ◽  
pp. 519-527 ◽  
Author(s):  
R. Dvořák ◽  
A. Pechová ◽  
L. Pavlata ◽  
J. Filípek ◽  
J. Dostálová ◽  
...  

The goal of the trial was to reduce the content of antinutritional substances in pea (Pisum sativum L.) seeds in order to enhance its use in livestock nutrition. A variety of field pea (Pisum sativum L.) with a high content of antinutritional substances and favourable production traits (Gotik) was chosen. Native and heat-treated pea seeds were used to collect representative samples (n = 6) for analytical purposes. The technology (V-0 technology, Czech patent No. 285745) was further modified by adjusting the reactor temperature, the duration of exposure to that temperature, and the duration of ageing of the material treated in this way (V-I and V-II technologies). The methodology of treatment is based on exposing pea seeds to vapour, organic acids and selected oxides.The monitored parameters included antinutritional substances. As far as the antinutritional substances were concerned, the content of trypsin inhibitors in native pea seeds (P) was around 15.4 ± 0.5 TIU. After treatment with technologies V-0, V-I, and V-II its activity dropped by 83.8, 80.5 and 83.8%, respectively. The pre-treatment titre of lectins (P) was 717 ± 376. It dropped by 70.3, 35.7 and 73.2% after treatment with technologies V-0, V-I and V-II, respectively. The content of tannins measured by the amount of gallic acid in native pea seeds was 49.1 ± 2.7 mg per kg. It dropped by 41.4, 32.0 and 46.2% after the application of the above-mentioned technologies. The content of indigestible oligosaccharides causing flatulence was less affected by the treatments. The pre-treatment content of raffinose was 9.5 ± 0.5 g/kg. The drop associated with the treatment was 9.5, 6.3 and 10.5%, respectively. The pre-treatment content of stachyose was 21.4 ± 0.8 g/kg and after treatment with technologies V-0 and V-II it dropped by 7.0% and by 16.4%, respectively. The application of technology V-I did not result in a drop in the content of stachyose. The content of verbascose in native pea seeds was 16.1 g/kgand the treatment with technologies V-0; V-I and V-II resulted in a drop by 7.5, 5.6 and 20.5%, respectively. As for the detected phenolic acids, with the exception of caffeic acid, not a drop, but an increase in their content was recorded. Isoflavone oestrogens such as daidzein and genistein also recorded a small increase in their content. The results of the trial lead us to conclude that the above-described methods of pea seed treatment, especially the V-II variant, proved to be useful and can be recommended for practical use.  


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2212-2220
Author(s):  
Jhonatan P. Barro ◽  
Maurício C. Meyer ◽  
Claúdia V. Godoy ◽  
Alfredo R. Dias ◽  
Carlos M. Utiamada ◽  
...  

White mold, caused by Sclerotinia sclerotiorum, is a yield-limiting disease of soybean in Brazil. Uniform fungicide trials have been conducted annually since 2009. Data from 74 cooperative field trials conducted over a 10-year period were assembled. We selected five fungicides applied two times around flowering: dimoxystrobin plus boscalid (DIMO+BOSC), carbendazim plus procymidone (CARB+PROC), fluazinam (FLUZ), fluopyram (FLUO), and procymidone (PROC). For comparison, thiophanate-methyl (TMET) applied four times was also included as a low-cost treatment. Network models were fitted to the log of white mold incidence (percentages) and log of sclerotia mass data (grams/hectare) and to the nontransformed yield data (kilograms/hectare) for each treatment, including the untreated check. Back-transformation of the meta-analytic estimates indicated that the lowest and highest mean (95% confidence interval [CI]) percent reductions in incidence and sclerotia mass were 54.2 (49.3 to 58.7) and 51.6% (43.7 to 58.3) for TMET and 83.8 (79.1 to 87.5) and 87% (81.9 to 91.6) for CARB+PROC, respectively. The overall mean (95% CI) yield responses ranged from 323 kg/ha (247.4 to 400.3) for TMET to 626 kg/ha (521.7 to 731.7) for DIMO+BOSC, but the variance was significantly reduced by a binary variable (30% threshold) describing disease incidence in the untreated check. On average, an increment of 352 kg/ha was estimated for trials where the incidence was >30% compared with the low-disease scenario. Hence, the probability of breaking even on fungicide costs for the high-disease scenario was >65% for the more effective, but more expensive fungicide (FLUZ) than TMET. For the low-disease scenario, profitability was less likely and depended more on variations in fungicide cost and soybean price.


1998 ◽  
Vol 23 (1) ◽  
pp. 170-172
Author(s):  
Arthur A. Hower ◽  
Paul Rebarchak

Abstract Two tests were conducted to evaluate the efficacy of insecticides against potato leafhopper. The experiments were conducted at the Russell E. Larson Agricultural Research Center at Rock Springs, Centre County, PA on a second-year (first full harvest year) alfalfa (Pioneer 5373) crop. Plots of 40 X 40 ft were arranged in a RCB design with an untreated check in each of four replications. Potato leafhopper densities were estimated from 20 pendulum sweeps of a 15-inch-diam insect beating net taken randomly across each plot. Prior to treatment, potato leafhopper densities were estimated on 9 Jun (Experiment 1). Due to inclement weather, a pre-treatment sweep was not taken for Experiment 2. With the exception of LABS 116 in Experiment 1, all insecticide treatments were applied as foliar sprays on 16 Jun (Experiment 1) and 25 Jul (Experiment 2). LABS 116 was applied in Experiment 1 on 17 Jun as a result of needing an additional product shipment. Cygon 4E was added as a standard insecticide treatment in both Experiments. Alfalfa height at application was 4-6 inches. Insecticides were applied in 25 gal of water per acre at 25 psi with a tractor-mounted sprayer equipped with a 20-ft boom containing 80 degree flat fan nozzles and 50 mesh screens. Leafhopper densities were sampled on 19, 23, 30 Jun and 8 Jul (i.e. 3, 7, 14, 22 DAT) for Experiment 1, and 25 Jul, and 1, 8, 15, 24 Aug (i.e. 3, 7, 14, 21, 30 DAT) for Experiment 2. Densities reported represent the number of adults, number of nymphs, and the combined numbers of adults and nymphs collected per 20 sweeps. Alfalfa yield was determined on 8 Jul (Experiment 1) and 25 Aug (Experiment 2) from a 60-ft2 swath taken from each plot with a Carter Forage Harvester (Carter Mfg. Co. Inc., Brookston, IN). Percent moisture was determined by oven drying a subsample of alfalfa (approximately 2 lb wet). Alfalfa yield is reported as dry weight lb per acre.


Sign in / Sign up

Export Citation Format

Share Document