scholarly journals Convergent nitrogen–phosphorus scaling relationships in different plant organs along an elevational gradient

AoB Plants ◽  
2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Xiaoping Chen ◽  
Mantang Wang ◽  
Man Li ◽  
Jun Sun ◽  
Min Lyu ◽  
...  

Abstract A general relationship between the nitrogen (N) and phosphorus (P) content of all plant organs (e.g. leaf, stem, and root) is hypothesized to exist according to whole-plant economics spectrum (PES) theory, but the evidence supporting these expected patterns remains scarce. We measured the N and P content of the leaves, twigs and fine roots of 64 species in three different forest communities along an elevational gradient (evergreen broad-leaved forest, 1319 m a.s.l., coniferous and broad-leaved mixed forest, 1697 m a.s.l., and deciduous forest, 1818 m a.s.l.) in the Wuyishan National Nature Reserve, southeastern China. The scaling relationship between the N and P content and the linear regression relationship between the N:P ratio and N and P content were analysed. The leaf N and P content was significantly higher at the high-elevation site than at the low- or middle-elevation sites (P < 0.001). The N and P content followed a power-law relationship with similar scaling slopes between organs. The N (common slope, 1.13) and P (common slope, 1.03) content isometrically covaried among leaves, twigs and roots. The scaling exponents of the N–P relationship were not significantly different from 1.0 in all organs, with a common slope of 1.08. The scaling constants of N–P decreased significantly (P < 0.05) from the highest value in fine roots (β = 1.25), followed by leaves (β = 1.17), to the lowest value in twigs (β = 0.88). Standardized major axis (SMA) analyses and comparisons of 95 % confidence intervals also showed that the numerical values of the scaling slopes and the scaling constants did not differ regardless of elevation. The N content, but not the P content, accounted for a large proportion of the variation in the N:P ratio in leaves (N:P and N: r2 = 0.31, F = 33.36, P < 0.001) and fine roots (N:P and N: r2 = 0.15, F = 10.65, P < 0.05). In contrast, the N:P ratio was significantly related to both the N and P content in the twigs (N:P and N: r2 = 0.20, F = 17.86, P < 0.001; N:P and P: r2 = 0.34, F = 35.03, P < 0.001, respectively). Our results indicate that different organs of subtropical woody plants share a similar isometric scaling relationship between their N and P content, providing partial support for the PES hypothesis. Moreover, the effects of the N and P content on the N:P ratio differ between metabolic organs (leaves and fine roots) and structural organs (twigs), elucidating the stoichiometric regulatory mechanism of different organs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin U. Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

AbstractThe formation of an upper distributional range limit for species breeding along mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empirical understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at elevations lower than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


2021 ◽  
Author(s):  
Wenchun He ◽  
Yang Wang ◽  
Xiaochen Wen ◽  
Yu Wang ◽  
Baoru Xiao ◽  
...  

Abstract The growth of fine roots of trees is affected by environmental changes and biological factors. At present, there have been many researches on the physiological plasticity of fine roots caused by environmental changes, but there are still few studies on the influence of biological factors on fine roots. This paper focused on the contents of carbon (C), nitrogen (N), and phosphorus (P), and their ecological stoichiometric ratios in different root orders of Cupressus funebris fine roots in 11 mixed stands with Koelreuteria paniculate or Toona sinensis at different ratios, and the effects of soil physical and chemical properties on the root chemical properties. It aimed to provide new insights into the fine-root nutrient distribution pattern and the transformation or reconstruction of low-efficiency pure forests from the standpoint of forest types. The results showed that: soil pH, and the content of available nitrogen (SAN), available phosphorus (SAP) and available potassium (SAK) differed significantly in the tested mixed forest stands. No significant differences in carbon content of fine roots were observed in different mixed stands. The content of nitrogen and phosphorus in fine roots in mixed forests showed heterogeneity. Species mixing changed the C/N, C/P and N/P of the C. funebris compared the pure stands. The "T. sinensis + C. funebris" forest alleviated the limitation of the lack of phosphorus on fine roots of C. funebris on. The principal component analysis showed that mixed stands of "T. sinensis + C. funebris" had the highest comprehensive score at ratio of "3:1". Thus, our results recommended the adoption of T. sinensis, especially at 75%, to reconstruct the low-efficiency pure C. funebris forest.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1067
Author(s):  
Aalap Dixit ◽  
Thomas Kolb ◽  
Owen Burney

Ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) forests of the southwestern US are threatened by climate change and deforestation. Information about geographic patterns of provenance variation in budburst phenology is needed to make decisions about selecting seed sources for future planting. In this study, provenance variation in the budburst phenology of ponderosa pine seedlings was examined using common garden studies. Seedlings from 21 provenances, representing an elevational gradient in Arizona and New Mexico, were planted in July 2018 at a ponderosa pine-dominated field site in northern Arizona. Field budburst was monitored weekly on all seedlings in the spring of 2019. Field budburst was compared with budburst timing of the same provenances measured under greenhouse conditions. The hypotheses for this study were that (1) budburst varies among provenances, with earlier budburst in low-elevation provenances, and (2) differences in budburst timing among provenances are consistent for seedlings grown in greenhouse and field environments. Field results show that provenances vary in budburst date and that low- and middle-elevation provenances break bud sooner than high-elevation provenances. Field budburst date had a moderate, positive correlation with provenance mean annual precipitation (r = 0.522) and a moderate, negative trend with latitude (r = −0.413). Budburst date of provenances in the greenhouse had a moderate, positive trend with budburst date in the field (r = 0.554), suggesting application of greenhouse results to field plantings. Such information about provenance variation and environmental and geographic trends in budburst timing will be useful for developing species-specific seed transfer guidelines and effective assisted migration strategies in a changing climate.


2018 ◽  
Vol 115 (8) ◽  
pp. 1848-1853 ◽  
Author(s):  
Sabine B. Rumpf ◽  
Karl Hülber ◽  
Günther Klonner ◽  
Dietmar Moser ◽  
Martin Schütz ◽  
...  

Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species’ abundance increased more for species from lower elevations. Traits affecting the species’ dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as “winners” of recent changes, yet “losers” are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 456
Author(s):  
Lacy D. Chick ◽  
Jean-Philippe Lessard ◽  
Robert R. Dunn ◽  
Nathan J. Sanders

A fundamental tenet of biogeography is that abiotic and biotic factors interact to shape the distributions of species and the organization of communities, with interactions being more important in benign environments, and environmental filtering more important in stressful environments. This pattern is often inferred using large databases or phylogenetic signal, but physiological mechanisms underlying such patterns are rarely examined. We focused on 18 ant species at 29 sites along an extensive elevational gradient, coupling experimental data on critical thermal limits, null model analyses, and observational data of density and abundance to elucidate factors governing species’ elevational range limits. Thermal tolerance data showed that environmental conditions were likely to be more important in colder, more stressful environments, where physiology was the most important constraint on the distribution and density of ant species. Conversely, the evidence for species interactions was strongest in warmer, more benign conditions, as indicated by our observational data and null model analyses. Our results provide a strong test that biotic interactions drive the distributions and density of species in warm climates, but that environmental filtering predominates at colder, high-elevation sites. Such a pattern suggests that the responses of species to climate change are likely to be context-dependent and more specifically, geographically-dependent.


2020 ◽  
Vol 12 (21) ◽  
pp. 3573
Author(s):  
J. Malin Hoeppner ◽  
Andrew K. Skidmore ◽  
Roshanak Darvishzadeh ◽  
Marco Heurich ◽  
Hsing-Chung Chang ◽  
...  

Chlorophyll content, as the primary pigment driving photosynthesis, is directly affected by many natural and anthropogenic disturbances and stressors. Accurate and timely estimation of canopy chlorophyll content (CCC) is essential for effective ecosystem monitoring to allow for successful management interventions to occur. Hyperspectral remote sensing offers the possibility to accurately estimate and map canopy chlorophyll content. In the past, research has predominantly focused on the use of hyperspectral data on canopy chlorophyll content retrieval of crops and grassland ecosystems. Therefore, in this study, a temperate mixed forest, the Bavarian Forest National Park in Germany, was chosen as the study site. We compared different statistical models (narrowband vegetation indices (VIs), partial least squares regression (PLSR) and random forest (RF)) in their accuracy to predict CCC using airborne hyperspectral data. The airborne hyperspectral imagery was acquired by the AisaFenix sensor (623 bands; 3.5 nm spectral resolution in the visible near-infrared (VNIR) region, and 12 nm spectral resolution in the shortwave infrared (SWIR) region; 3 m spatial resolution) on July 6, 2017. In situ leaf chlorophyll content and leaf area index measurements were sampled from the upper canopy of coniferous, mixed, and deciduous forest stands in July and August 2017. The study yielded the highest retrieval accuracies with PLSR (root mean square error (RMSE) = 0.25 g/m2, R2 = 0.66). It further indicated specific spectral regions within the visible (390–400 nm and 470–540 nm), red edge (680–780 nm), near-infrared (1050–1100 nm) and shortwave infrared regions (2000–2270 nm) that were important for CCC retrieval. The results showed that forest CCC can be mapped with relatively high accuracies using image spectroscopy.


2010 ◽  
Vol 49 (5) ◽  
pp. 879-888 ◽  
Author(s):  
Kelsey N. Scheitlin ◽  
P. Grady Dixon

Abstract This study examines the relationship between diurnal temperature range (DTR) and land use/land cover (LULC) in a portion of the Southeast. Temperature data for all synoptically weak days within a 10-yr period are gathered from the National Climatic Data Center for 144 weather stations. Each station is classified as one of the following LULC types: urban, agriculture, evergreen forest, deciduous forest, or mixed forest. A three-way analysis of variance and paired-sample t tests are used to test for significant DTR differences due to LULC, month, and airmass type. The LULC types display two clear groups according to their DTR, with agricultural and urban areas consistently experiencing the smallest DTRs, and the forest types experiencing greater DTRs. The dry air masses seem to enhance the DTR differences between vegetated LULC types by emphasizing the differences in evapotranspiration. Meanwhile, the high moisture content of moist air masses prohibits extensive evapotranspirational cooling in the vegetated areas. This lessens the DTR differences between vegetated LULC types, while enhancing the differences between vegetated land and urban areas. All of the LULC types exhibit an annual bimodal DTR pattern with peaks in April and October. Since both vegetated and nonvegetated areas experience the bimodal pattern, this may conflict with previous research that names seasonal changes in evapotranspiration as the most probable cause for the annual trend. These findings suggest that airmass type has a larger and more consistent influence on the DTR of an area than LULC type and therefore may play a role in causing the bimodal DTR pattern, altering DTR with the seasonal distribution of airmass occurrence.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Imam Widhiono ◽  
Eming Sudiana ◽  
Darsono Darsono

Increases in mean temperature affect the diversity and abundance of wild bees in agricultural ecosystems. Pollinator community composition is expected to change along an elevational gradient due to differences in the daily ambient temperature. This study investigated the diversity and abundance of wild bees in an agricultural area along an elevational gradient in Central Java, Indonesia. Wild bees were collected using a sweep net in 40 green bean (Phaseolus vulgaris) cultivation sampling locations at seven different elevations (8, 108, 224, 424, 644, 893, and 1017 m above sea level). Species diversity was determined using the Shannon–Wiener diversity index. We identified 932 individuals from 8 species of wild bee belonging to 3 families. The family Apidae was predominant, with 6 species, while only 1 species was found from each of Megachilidae and Halictidae. Across the study sites, diversity increased with increasing elevation (H′= 1.4,D= 0.25, andE= 0.78 at low elevation toH′= 2.04,D= 0.13, andE= 0.96 at high elevation), and higher numbers of species were found at middle and high elevations. Species richness and abundance increased linearly with increasing elevation, and species diversity was highest at middle elevations.


Behaviour ◽  
2015 ◽  
Vol 152 (14) ◽  
pp. 1933-1951 ◽  
Author(s):  
Tamsin Burbidge ◽  
Thari Parson ◽  
Paula C. Caycedo-Rosales ◽  
Carlos Daniel Cadena ◽  
Hans Slabbekoorn

Behavioural barriers to gene flow can play a key role in speciation and hybridisation. Birdsong is well-known for its potential contribution to such behavioural barriers as it may affect gene flow through an effect on territorial and mating success across population boundaries. Conspecific recognition and heterospecific discrimination of acoustic variation can prevent or limit hybridization in areas where closely related species meet. Here we tested the impact of song differences on territorial response levels between two adjacent Henicorhina wood-wren species along an elevational gradient in Colombia. In an earlier study, playback results had revealed an asymmetric response pattern, with low-elevation H. leucophrys bangsi responding strongly to any conspecific or heterospecific song variant, whereas high-elevation H. anachoreta birds discriminated, responding more strongly to their own songs than to those of bangsi. However, in that study we could not exclude a role for relative familiarity to the song stimuli. In the current study we confirm the asymmetric response pattern with song stimuli recorded close to and on both sides of the distinct acoustic boundary. Furthermore, we also show a previously unnoticed divergence in singing style between these two wood-wren species, which may contribute to an acoustically guided barrier to hybridization in this secondary contact zone.


Sign in / Sign up

Export Citation Format

Share Document