scholarly journals PrimerPooler: automated primer pooling to prepare library for targeted sequencing

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Silas S. Brown ◽  
Yun-Wen Chen ◽  
Ming Wang ◽  
Alexandra Clipson ◽  
Eguzkine Ochoa ◽  
...  

Abstract Targeted next-generation sequencing based on PCR amplification involves pooling of hundreds to thousands of primers, for preamplification and subsequent parallel single/multiplex PCR. It is often necessary to allocate the set of primers into subpools, a common issue being potential cross-hybridization. For smaller numbers of primers, pool division can be done manually using trial and error to minimize potential hybridization, but this becomes inefficient and time consuming with increasing numbers of primer pairs. We developed PrimerPooler that automates swapping of primer pairs between any user-defined number of subpools to obtain combinations with low-potential interactions. PrimerPooler performs inter-/intra-primer hybridization analysis to identify the adverse interactions, as well as simultaneous mapping of all primers onto a genome sequence in a single run without requiring a prior index of the genome. This allows detection of overlapping primer pairs and allocation of these primer pairs into separate subpools where tiling approaches are used. Using PrimerPooler, 1153 primer pairs were assigned to three preamplification pools (388, 389 and 376 primer pairs each), then 144 subpools of six- to nine-plex PCR for Fluidigm Access Array PCR, followed by Illumina MiSeq sequencing. With optimized experimental protocols, an average of 3269 reads was achieved for the targeted regions, with 95% of targets covered by at least 50 reads, the minimal depth of reads for confident variant calling. PrimerPooler provides a fast and highly efficient stratification of primer pairs for targeted enrichment, thus ensuring representative amplification of the targeted sequences. PrimerPooler is also able to analyse degenerate primers, and is thus also useful for microbiological identification and related target sequencing.

2021 ◽  
Vol 22 (2) ◽  
pp. 935
Author(s):  
Federica Fazzini ◽  
Liane Fendt ◽  
Sebastian Schönherr ◽  
Lukas Forer ◽  
Bernd Schöpf ◽  
...  

Massive parallel sequencing technologies are promising a highly sensitive detection of low-level mutations, especially in mitochondrial DNA (mtDNA) studies. However, processes from DNA extraction and library construction to bioinformatic analysis include several varying tasks. Further, there is no validated recommendation for the comprehensive procedure. In this study, we examined potential pitfalls on the sequencing results based on two-person mtDNA mixtures. Therefore, we compared three DNA polymerases, six different variant callers in five mixtures between 50% and 0.5% variant allele frequencies generated with two different amplification protocols. In total, 48 samples were sequenced on Illumina MiSeq. Low-level variant calling at the 1% variant level and below was performed by comparing trimming and PCR duplicate removal as well as six different variant callers. The results indicate that sensitivity, specificity, and precision highly depend on the investigated polymerase but also vary based on the analysis tools. Our data highlight the advantage of prior standardization and validation of the individual laboratory setup with a DNA mixture model. Finally, we provide an artificial heteroplasmy benchmark dataset that can help improve somatic variant callers or pipelines, which may be of great interest for research related to cancer and aging.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2630-2640 ◽  
Author(s):  
J. T. Tambong ◽  
R. Xu ◽  
E. S. P. Bromfield

Intercistronic heterogeneity of the 16S–23S rRNA internal transcribed spacer regions (ITS1) was investigated in 29 strains of fluorescent pseudomonads isolated from subterranean seeds of Amphicarpa bracteata (hog peanut). PCR amplification of the ITS1 region generated one or two products from the strains. Sequence analysis of the amplified fragments revealed an ITS1 fragment of about 517 bp that contained genes for tRNAIle and tRNAAla in all 29 strains; an additional smaller ITS1 of 279 bp without tRNA features was detected in 15 of the strains. The length difference appeared to be due to deletions of several nucleotide blocks between the 70 bp and 359 bp positions of the alignment. The end of the deletions in the variant ITS1 type coincided with the start of antiterminator box A, which is homologous to box A of other bacteria. Phylogenetic analyses using the neighbour-joining algorithm revealed two major phylogenetic clusters, one for each of the ITS1 types. Using a single specific primer set and the DNA-intercalating dye SYBR Green I for real-time PCR and melting-curve analysis produced highly informative curves with one or two recognizable melting peaks that readily distinguished between the two ITS1 types in pure cultures. The assay was used to confirm the presence of the variant ITS1 type in the Pseudomonas community in total DNA from root-zone soil and seed coats of hog peanut. Heterogeneity of the ITS1 region between species has potential for studying molecular systematics and population genetics of the genus Pseudomonas, but the presence of non-identical rRNA operons within a genome may pose problems.


2007 ◽  
Vol 32 (5) ◽  
pp. 373-380 ◽  
Author(s):  
Jorge F. Pereira ◽  
Mariana D.C. Ignacchiti ◽  
Elza F. Araújo ◽  
Sérgio H. Brommonschenkel ◽  
Júlio C.M. Cascardo ◽  
...  

Reverse transcriptase (RT) sequence analysis is an important technique used to detect the presence of transposable elements in a genome. Putative RT sequences were analyzed in the genome of the pathogenic fungus C. perniciosa, the causal agent of witches' broom disease of cocoa. A 394 bp fragment was amplified from genomic DNA of different isolates of C. perniciosa belonging to C-, L-, and S-biotypes and collected from various geographical areas. The cleavage of PCR products with restriction enzymes and the sequencing of various RT fragments indicated the presence of several sequences showing transition events (G:C to A:T). Southern blot analysis revealed high copy numbers of RT signals, forming different patterns among C-, S-, and L-biotype isolates. Sequence comparisons of the predicted RT peptide indicate a close relationship with the RT protein from thegypsy family of LTR-retrotransposons. The possible role of these retrotransposons in generating genetic variability in the homothallic C. perniciosa is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengfei Xu ◽  
Yantao Zhu ◽  
Yanfeng Zhang ◽  
Jianxia Jiang ◽  
Liyong Yang ◽  
...  

MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.


1998 ◽  
Vol 64 (10) ◽  
pp. 3724-3730 ◽  
Author(s):  
Martin F. Polz ◽  
Colleen M. Cavanaugh

ABSTRACT Bias introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. To explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers. Quantification and comparison of template and product ratios showed that there was considerable and reproducible overamplification of specific templates. Variability between replicates also contributed to the observed bias but in a comparatively minor way. Based on these initial observations, template dosage and differences in binding energies of permutations of the degenerate, universal primers were tested as two likely causes of this template-specific bias by using 16S rDNA templates modified by site-directed mutagenesis. When mixtures of mutagenized templates containing AT- and GC-rich priming sites were used, templates containing the GC-rich permutation amplified with higher efficiency, indicating that different primer binding energies may to a large extent be responsible for overamplification. In contrast, gene copy number was found to be an unlikely cause of the observed bias. Similarly, amplification from DNA extracted from a natural community to which different amounts of genomic DNA of a single bacterial species were added did not affect relative product ratios. Bias was reduced considerably by using high template concentrations, by performing fewer cycles, and by mixing replicate reaction preparations.


1998 ◽  
Vol 88 (12) ◽  
pp. 1262-1268 ◽  
Author(s):  
Pathmanathan Umaharan ◽  
Malla Padidam ◽  
Ralph H. Phelps ◽  
Roger N. Beachy ◽  
Claude M. Fauquet

Seven crop and eight weed species from 12 agricultural locations in Trinidad and Tobago were assayed for the presence of whitefly-transmitted geminiviruses (WTGs) by using dot blot hybridization and polymerase chain reaction (PCR) amplification of the N-terminal coat protein sequence with degenerate primers. The amplified fragments were cloned and analyzed by restriction enzyme digestion to determine fragment length polymorphism among the cloned fragments. Representative clones were then sequenced and subjected to phylogenetic analysis to determine the sequence similarity to known WTGs. WTGs were found in every location sampled and in 10 of the 15 species investigated: Lycopersicon esculentum(tomato), Capsicum annuum (pepper), Capsicum frutescens (sweet pepper), Abelmoschus esculentus (okra), Phaseolus vulgaris (beans), Alternanthera tenella, Desmodium frutescens, Euphorbia heterophylla, Malva alceifolia, and Sida acuta. The geminiviruses infecting these plants were closely related to potato yellow mosaic virus from Venezuela (PYMV-VE) and tomato leaf curl virus from Panama (ToLCV-PA). However, in pepper, sweet pepper, okra, Alternanthera tenella, Euphorbia heterophylla, Des-modium frutescens, and in one sample of tomato, a PYMV-VE-related virus was found in mixed infections with a virus related to pepper huasteco virus. Full-length infectious DNA-A and DNA-B of a tomato-infecting geminivirus from Trinidad and Tobago were cloned and sequenced. DNA-A appears to be a recombinant derived from PYMV-VE or ToLCV-PA, and Sida golden mosaic from Honduras. The implications of these findings in the control of WTGs are discussed.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11002-11002 ◽  
Author(s):  
Philippe L. Bedard ◽  
Amit M. Oza ◽  
Ming-Sound Tsao ◽  
Natasha B. Leighl ◽  
Frances A. Shepherd ◽  
...  

11002 Background: IMPACT is an institution-wide screening program to identify patients (pts) treated at PMCC with somatic alterations that can be matched to targeted therapies. Methods: Pts with advanced breast, colorectal (CRC), non-small cell lung (NSCLC), ovarian cancers and selected other solid tumors treated at PMCC were eligible. Tumor DNA was isolated from a FFPE archived sample and genotyped using a customized Sequenom panel (23 genes, 280 mutations) in a CLIA-certified laboratory. Verified mutations were reported in pts electronic health records. Selected FFPE samples were further characterized by NGS with the Illumina MiSeq TruSeq Amplicon Cancer Panel (48 genes, 212 amplicons, ≥500x coverage) for platform validation. Results: From Mar 1/12-Jan 10/13, 485 pts were enrolled with median 1 prior treatment for advanced disease (range 0-6). Of 33 (7%) screen failures, 5% were for insufficient tissue and 2% for clinical deterioration. Median DNA quantity from FFPE = 4250ng (range 15-32550ng). The median time from tissue receipt to reporting was 5 weeks (range 1-23). Mutations were identified by Sequenom in 137/349 (39%) pts, including 24/79 (30%) breast, 40/80 (50%) CRC, 54/88 (61%) NSCLC, 17/78 (22%) ovarian, and 2/24 (8%) other cancers. Mutations detected were: 76 KRAS, 35 PIK3CA, 22 EGFR, 5 NRAS, 5 ERBB2, 5 CTNNB1, 4 BRAF, and 1 AKT1. MiSeq was concordant with Sequenom in 112/113 (99%) pts, with mutations identified in 94/114 (82%). The average number of mutations detected by MiSeq was 1.72/pt (range 0-7) compared with 0.49/pt by Sequenom (range 0-2). After a median follow up of 5.0 months, 31/137 (23%) pts with mutations have been matched to targeted therapies, including 14 pts enrolled in clinical trials (15 trials) matched to their genotype. Of the 10 trial pts with at least one response assessment, 3 PR (1 confirmed) and 2 SD ≥ 24 weeks have been observed. Conclusions: Molecular profiling can be integrated into the routine care of advanced cancer pts. Genotyping and targeted NGS are feasible in a clinical laboratory using stored archival FFPE tumor samples. NGS identifies additional actionable mutations to inform clinical-decision making. Clinical trial information: NCT01505400.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 175
Author(s):  
Li-Fang Yeo ◽  
Farhang F. Aghakhanian ◽  
James S. Y. Tan ◽  
Han Ming Gan ◽  
Maude E. Phipps

Background: The indigenous people of Peninsular Malaysia, also known as Orang Asli, have gradually been urbanized. A shift towards non-communicable diseases commonly associated with sedentary lifestyles have been reported in many tribes. This study engaged with a semi-urbanized Temiar tribe from Kampong Pos Piah, Perak, who are experiencing an epidemiological transition. Methods:  Weight, height, waist circumference, blood pressure, HbA1C and lipid levels were measured as indicators of cardio-metabolic health. DNA was extracted from saliva using salting-out method followed by PCR amplification of the V3-V4 region of the 16S rRNA gene and sequencing on Illumina MiSeq. Microbiome analysis was conducted on Qiime v1.9. Statistical analysis was conducted using Qiime v1.9 and R.   Results: The study revealed that 60.4% of the Temiar community were overweight/obese, with a higher prevalence among women. HbA1C levels showed that 45% of Temiar had pre-diabetes. Insulin resistance was identified in 21% of Temiar by using a surrogate marker, TG/HDL. In total, 56.5% of Temiar were pre-hypertensive, and the condition was prevalent across all age-groups. The saliva microbiome profiles of Temiar revealed significant differences by gender, BMI, abdominal obesity as well as smoking status. The relative abundance of Bifidobacterium was increased in men whereas Prevotella, Capnocytophaga, Leptotrichia, Neisseria and Streptococcus were increased in women. Proteobacteria was significantly depleted in smokers. Conclusions: Temiar from Pos Piah had a high prevalence of cardio-metabolic risks, including general and abdominal obesity, pre-diabetes, prehypertension and hypertension. This phenomenon has not been previously reported in this tribe. The saliva microbiome profiles were significantly different for individuals of different gender, BMI scores, abdominal obesity and smoking status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhouping Cui ◽  
Jian Zhang ◽  
Zhihui Sun ◽  
Bingzheng Liu ◽  
Chong Zhao ◽  
...  

Sex-specific markers play an important role in revealing sex-determination mechanism. Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in several Asian countries and its gonads are the sole edible parts for people. However, growth rate and immunocompetence differ by sex in this species, sex-specific markers have not been identified, and the sex-determination mechanism of sea urchin remains undetermined. In this study, type IIB endonuclease restriction-site associated DNA sequencing (2b-RAD-seq) and a genome survey of M. nudus were performed, and three female-specific markers and three female heterogametic single nucleotide polymorphism (SNP) loci were identified. We validated these sex-specific markers via PCR amplification in a large number of individuals, including wild and artificially bred populations. Several open reading frames (ORFs) were predicted, although there are no potential genes known for sex determination and sex differentiation within the scaffold in which the sex-specific markers are located. Importantly, the female-specific sequences and female heterozygous SNP loci indicate that a female heterogametic and male homogametic ZW/ZZ sex-determination system should exist in M. nudus. The results provide a solid basis for revealing the sex-determination mechanism of this species, and open up new possibilities for developing sex-control breeding in sea urchin.


Sign in / Sign up

Export Citation Format

Share Document