scholarly journals A Polyphenol Rich Muscadine Grape Extract Reduces Triple Negative Breast Cancer Cell Migration in Association with Changes in Cell Morphology and Motility-Related Proteins

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 325-325
Author(s):  
Patricia Gallagher ◽  
Marianne Collard ◽  
Heather Brown-Harding ◽  
Elisabeth Tallant

Abstract Objectives Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by the lack of estrogen receptors, progesterone receptors and over-expression of the human epidermal growth factor receptor 2, limiting targeted treatment.  TNBC disproportionally affects ethnic minorities and younger women and has a high propensity to metastasize, often within 5 years of diagnosis, making it one of the most aggressive breast cancer subtypes.  We showed that treatment with a proprietary muscadine grape extract (MGE) reduced the growth and metastasis of TNBC in mice.  Muscadine grapes (V. Rotundifolia) are rich in polyphenols and extracts produced from muscadine grape seed and skin are marketed as nutraceuticals for their anti-oxidant, anti-inflammatory, and anti-cancer properties.  The goal of these studies was to determine the molecular mechanisms for the reduction in metastatic growth by MGE. Methods A proprietary extract was prepared from muscadine grape seeds and skins.  Migration of MDA-MB-231 and BT-549 cells was measured by a scratch wound assay, cell shape was visualized by confocal microscopy and mRNA/proteins that participate in cell migration/motility were measured by RT-PCR and western blot hybridization. Results The extract reduced the migration of MDA-MB-231 and BT-549 TNBC cells in a dose-dependent manner.  The reduction in cell migration was associated with MGE-induced alterations in cell shape and actin filament organization, visualized by confocal microscopy.  The extract caused an apparent loss of cell polarization in MDA-MB-231 cells and a reduction in the presence of filopodia in BT-549 cells.  The MGE-induced reduction in migration and alterations in cell shape and polarization were associated with a decrease in Rho kinase ROCK1/2 mRNA and protein as well as both the mRNA and protein expression of RHAMM, a protein that is implicated in both cell motility and breast cancer progression. Conclusions These results demonstrate that a proprietary MGE reduces TNBC cell migration, in association with changes in cell shape and cytoskeleton as well as proteins that regulate migration and motility, suggesting that treatment of TNBC patients with MGE may slow or prevent metastatic progression. Funding Sources Chronic Disease Research Fund.

2020 ◽  
Vol 19 (16) ◽  
pp. 1983-1990 ◽  
Author(s):  
Hui-Yuan Lu ◽  
Jian-Sheng Zhu ◽  
Zhan Zhang ◽  
Wei-Jian Shen ◽  
Shan Jiang ◽  
...  

Background: Breast Cancer (BC) is the leading cause of cancer-related deaths among women. As such, novel chemotherapeutic agents are urgently needed, especially for Triple-Negative Breast Cancer (TNBC). Hydroxytyrosol (HT) and Oleuropein (OL) are rich in olive oil, which is associated with a low occurrence of BC. However, the effects and mechanisms of action of HT and OL in BC cells are still unclear. This study aimed to explore the molecular mechanisms underlying the antitumor effect of HT and OL in TNBC. Methods: TNBC MDA-MB-231 cells were treated with HT and OL in combination with Hepatocyte Growth Factor (HGF), rapamycin (Rapa, an inducer of autophagy) or 3-methyladenine (3-MA, an inhibitor of autophagy). Cell viability, migration, invasion, and autophagy signaling were analyzed by scratch assays, transwell migration assays, and Western blot analysis. Results: Treatment with HT or OL reduced MDA-MB-231 cell viability in a dose-dependent manner. MDAMB- 231 cells were more sensitive to HT treatment than OL treatment. Rapa treatment could significantly block HGF-induced MDA-MB-231 cell migration and invasion, suggesting that inhibition of autophagy could promote migration and invasion. Moreover, HT or OL treatment significantly suppressed HGF or 3-MA induced cell migration and invasion by reversing LC3-II/LC3-I and Beclin-1 downregulation and reversing p62 upregulation. Conclusion: These data indicated that HT and OL may inhibit migration and invasion of TNBC cells by activating autophagy. These findings provide potential therapeutic strategies that target autophagy to limit the pathogenesis and progression of BC.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiao-Jiao Zhang ◽  
Dai-Wei Wang ◽  
Dan Cai ◽  
Qing Lu ◽  
Yong-Xian Cheng

Ganoderma fungi as popular raw materials of numerous functional foods have been extensively investigated. In this study, five pairs of meroterpenoid enantiomers beyond well-known triterpenoids and polysaccharides, dayaolingzhiols I−M (1–5), were characterized from Ganoderma lucidum. Their structures were identified using spectroscopic and computational methods. Structurally, compound 1 features a novel dioxabicyclo[2.2.2]octan-3-one motif in the side chain. Ethnoknowledge-derived biological evaluation found that (+)-5 could activate Akt and AMPK phosphorylation in insulin-stimulated C2C12 cells, and (+)-5 could activate glucose uptake dose dependently in C2C12 cells. Furthermore, we found that (+)-1 (+)-4, and (–)-4 could significantly inhibit cell migration of the MDA-MB-231 cell line, of which (+)-4 showed significant inhibitory effects against cell migration of the MDA-MB-231 cell line in a dose-dependent manner. These findings revealed the meroterpenoidal composition of G. lucidum and its roles in the prevention of chronic diseases such as diabetes mellitus and triple-negative breast cancer.


2021 ◽  
Author(s):  
Marianne Collard ◽  
Nataleigh N Austin ◽  
Heather Brown-Harding ◽  
Brian Westwood ◽  
E Ann Tallant ◽  
...  

Abstract Background Triple negative breast cancer (TNBC) has a high propensity to metastasize and no treatments are available to slow or prevent metastatic progression. The goal of this study is to determine whether a proprietary high-polyphenol content muscadine grape extract (MGE) inhibits TNBC metastasis. Methods 4T1 TNBC cells were injected into the mammary fat pad of 6-week-old female Balb/c mice. After 2 weeks, tumors were surgically removed and mice were placed into a control (n=8) or treatment group that received 0.1 mg/mL total phenolics MGE in the drinking water (n=8) for 4 weeks. Immunohistochemistry (Ki67, α-SMA) and hemotoxylin and eosin staining were used to quantify metastases. Gut microbial composition was determined by 16S rRNA sequencing and short chain fatty acids (SCFAs) were detected by gas chromatography. MDA-MB-231, BT-549 and 4T1 TNBC cell motility and cytoskeletal organization was assessed in vitr o by scratch wound migration and confocal microscopy, respectively. Data were evaluated by student’s t -test. Results MGE reduced metastatic proliferation in mouse lungs (33.3%) and livers (58.3%) and decreased the number (51.1%) and size (17.4%) of liver metastases, resulting in a 55.7% reduction in metastatic tumor burden ( P < 0.01). Serum IL-6 was reduced 99.6% in MGE-treated mice ( P = 0.06). MGE attenuated migration, altered cytoskeletal organization, and reduced RHAMM expression in TNBC cells ( P < 0.05). The gut microbiota, a mediator of polyphenolic bioactivities, was altered significantly in MGE-treated mice; MGE increased the alpha diversity (7.14%), Firmicutes/Bacteroidetes ratio (2-fold), relative abundance of butyrate-producing genera, and butyrate (3-fold) ( P < 0.05). Butyrate inhibited 4T1 cell proliferation and migration, suggesting butyrate contributes to MGE’s anti-metastatic activities ( P < 0.05). Conclusion Our results indicate that MGE may be an effective adjuvant therapy to reduce TNBC metastatic progression.


Author(s):  
Ratna Dwi Ramadani ◽  
Rohmad Yudi Utomo ◽  
Adam Hermawan ◽  
Edy Meiyanto

Mortality in cancer is primarily due to failure of metastasis prevention. One strategy to target the cancerous cell is Boron Neutron Captured Therapy which showed high affinity toward cancer cells and reported to have anti-proliferative as well as antimetastatic activities. Cancer Chemoprevention Research Center Faculty of Pharmacy Universitas Gadjah Mada, has developed boron-containing substance namely pentagamaboronon-0 (PGB-0) which is known to exhibit anticancer activity towards breast cancer cell. The purposes of this research are focused to explore the anti-migratory activities of PGB-0-So against triple negative breast cancer cell. The MTT cytotoxicity assay of PGB-0-So against 4T1 breast cancer cell line were found to exert potential effect in dose-dependent manner with IC50 values of 39 μM. The study of cell migration inhibition using in vitro wound healing assays and gelatin zymography on highly metastasis breast cancer cell line 4T1, following the treatment of sub IC50 doses of PGB-0-So complex slightly inhibited cell migration through the inhibition of matrix metalloproteinase-9 expression. These findings suggest that PGB-0-So is potential as an anticancer agent.Keywords : curcumin analogue, PGB-0-So, 4T1 Cells, migration, MMP-9 


Author(s):  
Wei Xie ◽  
Huijie Zhao ◽  
Fengxian Wang ◽  
Yiyun Wang ◽  
Yuan He ◽  
...  

Abstract Background Anti-angiogenic therapy has been widely applied to the clinical treatment of malignant tumors. However, the efficacy of such treatments has been called into question, especially in triple-negative breast cancer (TNBC). Bevacizumab, the first anti-angiogenic agent approved by FDA, actually increases invasive and metastatic properties of TNBC cells, resulting from the activation of Wnt/β-catenin signaling in response to hypoxia. As a critical receptor of Wnt/β-catenin signaling, Frizzled-7 (Fzd7) is aberrantly expressed in TNBC, indicating Fzd7 a potential target for developing drugs to be combined with anti-angiogenic agents. Methods Hybridoma technique and antibody humanization technique were utilized to generate a Fzd7-targeting antibody (SHH002-hu1). Biolayer interferometry (BLI) assay and near infrared (NIR) imaging were conducted to detect the affinity and targeting ability of SHH002-hu1. Next, whether SHH002-hu1 could suppress the invasion and migration of TNBC cells induced by Bevacizumab were validated, and the underlying molecular mechanisms were elucidated by luciferase reporter and western blot assays. The nude-mice transplanted TNBC models were established to assess the anti-TNBC activities of SHH002-hu1 when combined with Bevacizumab. Then, the effects on putative TNBC stem-like cells and Wnt/β-catenin signaling were evaluated by immunofluorescence (IF). Further, the tumor-initiating and self-renew capacity of TNBC cells were studied by secondary nude mouse xenograft model and sphere formation assay. In addition, the effects of SHH002-hu1 on the adaptation of TNBC cells to hypoxia were evaluated by the detection of vasculogenic mimicry (VM) and hypoxia-inducible factor-1α (HIF-1α) transcriptional activity. Results The novel humanized antibody targeting Fzd7 (SHH002-hu1) exhibited extremely high affinity with Fzd7, and specifically targeted to Fzd7+ cells and tumor tissues. SHH002-hu1 repressed invasion, migration and epithelial-mesenchymal cell transformation (EMT) of TNBC cells induced by Bevacizumab through abating Wnt/β-catenin signaling. SHH002-hu1 significantly enhanced the capacity of Bevacizumab to inhibit the growth of TNBC via reducing the subpopulation of putative TNBC stem-like cells, further attenuating Bevacizumab-enhanced tumor-initiating and self-renew capacity of TNBC cells. Moreover, SHH002-hu1 effectively restrained the adaptation of TNBC cells to hypoxia via disrupting Wnt/β-catenin signaling. Conclusion SHH002-hu1 significantly enhances the anti-TNBC capacity of Bevacizumab, and shows the potential of preventing TNBC recurrence, suggesting SHH002-hu1 a good candidate for the synergistic therapy together with Bevacizumab.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pradip Shahi Thakuri ◽  
Megha Gupta ◽  
Sunil Singh ◽  
Ramila Joshi ◽  
Eric Glasgow ◽  
...  

Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


2014 ◽  
Vol 17 (3) ◽  
pp. 439 ◽  
Author(s):  
Wayne Goh ◽  
Inna Sleptsova-Freidrich ◽  
Nenad Petrovic

PURPOSE: Triple negative breast cancers (estrogen, progesterone and human epidermal growth factor 2 (HER2) receptor-negative) are among the most aggressive forms of cancers with limited treatment options. Doxorubicin is one of the agents found in many of the current cancer treatment protocols, although its use is limited by dose-dependent cardiotoxicity. This work investigates one of the ways to suppress cancer growth by inhibiting tumor cell ability to remove acid accumulated during its metabolism by proton pump inhibitor esomeprazole (a drug with extensive clinical use) which could serve as an addition to doxorubicin therapy. METHODS: In this work, we have investigated growth suppression of triple-negative breast cancer cells MDA-MB-468 by esomeprazole and doxorubicin by trypan blue exclusion assay. Measurement of acidification of treated cancer cells was performed using intracellular pH-sensitive probe, BCECF-AM. Finally, expression of gastric type proton pump (H+/K+ ATPase, a target for esomeprazole) on MDA-MB-468 cells was detected by immunofluorescence and Western blotting. RESULTS: We have found that esomeprazole suppresses growth of triple-negative breast cancer cell in vitro in a dose-dependent manner through increase in their intracellular acidification. In contrast, esomeprazole did not have significant effect on non-cancerous breast epithelial MCF-10A cells. Esomeprazole increases doxorubicin effects suggesting that dual treatments might be possible. In addition, response of MDA-MB-468 cells to esomeprazole could be mediated by gastric type proton pump (H+/K+ ATPase) in cancer cells contrary to previous beliefs that this proton pump expression is restricted to parietal cells of the stomach epithelia. CONCLUSION: This study provides first evidence that adjunct use of esomeprazole in breast cancer treatment might be a possible to combat adverse effects of doxorubicin and increase its effectiveness. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Author(s):  
Suzann Duan ◽  
Senny Nordmeier ◽  
Aidan E. Byrnes ◽  
Iain L. O. Buxton

AbstractMetastasis accounts for over 90% of cancer-related deaths. The mechanisms guiding this process remain unclear. Secreted nucleoside diphosphate kinase A and B (NDPK) support breast cancer metastasis. Proteomic evidence confirms their presence in breast cancer-derived extracellular vesicles (EVs). We investigated the role of EV-associated NDPK in modulating the host microenvironment in favor of pre-metastatic niche formation. We measured NDPK expression and activity in EVs isolated from triple-negative breast cancer (MDA-MB-231) and non-tumorigenic mammary epithelial (HME1) cells using flow cytometry, western blot, and ATP assay. We evaluated the effects of EV-associated NDPK on endothelial cell migration, vascular remodeling, and metastasis. We further assessed MDA-MB-231 EV induced-proteomic changes in support of pre-metastatic lung niche formation. NDPK-B expression and phosphotransferase activity were enriched in MDA-MB-231 EVs that promote vascular endothelial cell migration and disrupt monolayer integrity. MDA-MB-231 EV-treated mice demonstrate pulmonary vascular leakage and enhanced experimental lung metastasis, whereas treatment with an NDPK inhibitor or a P2Y1 purinoreceptor antagonist blunts these effects. We identified perturbations to the purinergic signaling pathway in experimental lungs, lending evidence to support a role for EV-associated NDPK-B in lung pre-metastatic niche formation and metastatic outgrowth.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Hassan Yousefi ◽  
Mousa Vatanmakanian ◽  
Sweaty Koul ◽  
Samuel Okpechi ◽  
Suresh Alahari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document