Adaptive Immune Responses in Humans During Nipah Virus Acute and Convalescent Phases of Infection

2019 ◽  
Vol 69 (10) ◽  
pp. 1752-1756 ◽  
Author(s):  
Govindakarnavar Arunkumar ◽  
Santhosha Devadiga ◽  
Anita K McElroy ◽  
Suresh Prabhu ◽  
Shahin Sheik ◽  
...  

Abstract Background Nipah virus (NiV) is 1 of 10 potential causes of imminent public health emergencies of international concern. We investigated the NiV outbreak that occurred in May 2018 in Kerala, India. Here we describe the longitudinal characteristics of cell-mediated and humoral immune responses to NiV infection during the acute and convalescent phases in 2 human survivors. Methods Serial blood samples were obtained from the only 2 survivors of the NiV outbreak in Kerala. We used flow cytometry to determine the absolute T-lymphocyte and B-lymphocyte counts and the phenotypes of both T and B cells. We also detected and quantitated the humoral immune response to NiV by virus-specific immunoglobulin M (IgM) and immunoglobulin G (IgG) enzyme-linked immunosorbent assay. Results Absolute numbers of T lymphocytes remained within normal limits throughout the period of illness studied in both survivors. However, a marked elevation of activated CD8 T cells was observed in both cases. More than 30% of total CD8 T cells expressed Ki67, indicating active proliferation. Proliferating (Ki-67+) CD8 T cells expressed high levels of granzyme B and PD-1, consistent with the profile of acute effector cells. Total B-lymphocyte, activated B-cell, and plasmablast counts were also elevated in NiV survivors. These individuals developed detectable NiV-specific IgM and IgG antibodies within a week of disease onset. Clearance of NiV RNA from blood preceded the appearance of virus-specific IgG and coincided with the peak of activated CD8 T cells. Conclusions We describe for the first time longitudinal kinetic data on the activation status of human B- and T-cell populations during acute NiV infection. While marked CD8 T-cell activation was observed with effector characteristics, activated CD4 T cells were less prominent.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Z. Shen ◽  
M. Rodriguez-Garcia ◽  
M. V. Patel ◽  
C. R. Wira

AbstractRegulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A626-A626
Author(s):  
Annah Rolig ◽  
Daniel Rose ◽  
Grace Helen McGee ◽  
Saul Kivimae ◽  
Werner Rubas ◽  
...  

BackgroundTumor cell death caused by radiation therapy (RT) can trigger anti-tumor immune responses in part because dying cells release adjuvant factors that amplify and sustain DC and T cell responses. We previously demonstrated that bempegaldesleukin (BEMPEG:NKTR-214, a first-in-class CD122-preferential IL-2 pathway agonist), significantly enhanced the anti-tumor efficacy of RT through a T cell-dependent mechanism. Because RT can induce either immunogenic or tolerogenic cell death, depending on a multitude of factors (radiation dose, cell cycle phase, and tumor microenvironment), we hypothesized that providing a specific immunogenic adjuvant, like intratumoral NKTR-262, a novel toll-like receptor (TLR) 7/8 agonist, to the tumor site would further improve systemic tumor-specific immunity by promoting synergistic activation of local immunostimulatory innate immune responses. Therefore, we evaluated whether intratumoral NKTR-262, combined with systemic BEMPEG treatment would result in improved tumor-specific immunity and survival compared to BEMPEG combined with RT.MethodsTumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; iv), RT (16 Gy x 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell activation status in the blood and tumor (7 days post-treatment). The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell cytolytic activity was determined in vitro with an Incucyte assay. Data are representative of 1–2 independent experiments (n=5–14/group) and statistical significance was determined by 1-way ANOVA (p-value cut-off of 0.05).ResultsBEMPEG/NKTR-262 resulted in significantly improved survival compared to BEMPEG/RT. Both combination therapies were CD8+ T cell dependent. However, response to BEMPEG/NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, BEMPEG/NKTR-262 induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+, TIM-3+), compared to BEMPEG/RT. Additionally, CD8+ T cells isolated from BEMPEG/NKTR-262-treated tumors had greater cytolytic capacity than those from BEMPEG/RT-treated mice.ConclusionsCombining BEMPEG with NKTR-262 lead to a more robust expansion of activated CD8+ T cells compared to the BEMPEG/RT combination. Enhancement of the activated CD8+ T cell response in mice treated with NKTR-262 in combination with BEMPEG suggests that intratumoral TLR stimulation provides superior antigen presentation and costimulatory activity compared to RT. A clinical trial of BEMPEG/NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).


1999 ◽  
Vol 190 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
Robert S. Mittler ◽  
Tina S. Bailey ◽  
Kerry Klussman ◽  
Mark D. Trailsmith ◽  
Michael K. Hoffmann

The 4-1BB receptor (CDw137), a member of the tumor necrosis factor receptor superfamily, has been shown to costimulate the activation of T cells. Here we show that anti–mouse 4-1BB monoclonal antibodies (mAbs) inhibit thymus-dependent antibody production by B cells. Injection of anti–4-1BB mAbs into mice being immunized with cellular or soluble protein antigens induced long-term anergy of antigen-specific T cells. The immune response to the type II T cell–independent antigen trinintrophenol-conjugated Ficoll, however, was not suppressed. Inhibition of humoral immunity occurred only when anti–4-1BB mAb was given within 1 wk after immunization. Anti–4-1BB inhibition was observed in mice lacking functional CD8+ T cells, indicating that CD8+ T cells were not required for the induction of anergy. Analysis of the requirements for the anti–4-1BB–mediated inhibition of humoral immunity revealed that suppression could not be adoptively transferred with T cells from anti–4-1BB–treated mice. Transfer of BALB/c splenic T cells from sheep red blood cell (SRBC)-immunized and anti–4-1BB–treated mice together with normal BALB/c B cells into C.B-17 severe combined immunodeficient mice failed to generate an anti-SRBC response. However, B cells from the SRBC-immunized, anti–4-1BB–treated BALB/c mice, together with normal naive T cells, exhibited a normal humoral immune response against SRBC after transfer, demonstrating that SRBC-specific B cells were left unaffected by anti–4-1BB mAbs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3188-3188
Author(s):  
Denise E. Sabatino ◽  
Federico Mingozzi ◽  
Haifeng Chen ◽  
Peter Colosi ◽  
Hildegund C.J. Ertl ◽  
...  

Abstract Recently, a clinical trial for adeno-associated virus serotype 2 (AAV2) mediated liver directed gene transfer of human Factor IX to subjects with severe hemophilia B revealed that two patients developed transient asymptomatic transaminitis following vector administration. Immunology studies in the second patient demonstrated a transient T cell response to AAV2 capsid peptides suggesting that the immune response to the AAV capsid may be related to the transient transaminitis. We hypothesized that the observations made in the human subjects were due to a CD8 T cell response to AAV2 capsid protein. Preclinical studies in mice and dogs, which are not naturally infected by wild type AAV2 viruses, did not predict these findings in the clinical study. Thus, we developed a mouse model in which we were able to mimic this phenomenon (Blood 102:493a). In an effort to further characterize the immune responses to AAV2 capsid proteins in this mouse model, we identified the T cell epitope in the AAV capsid protein recognized by murine C57Bl/6 CD8 T cells. A peptide library of AAV2 VP1 capsid peptides (n=145) that were synthesized as 15mers overlapping by 10 amino acids were divided into 6 pools each containing 24–25 peptides. C57Bl/6 mice were immunized intramuscularly with an adenovirus expressing AAV2 capsid protein. Nine days later the spleen was harvested and intracellular cytokine staining (ICS) was used to assess release of IFN-γ from CD8 T cells in response to 6 AAV2 capsid peptide pools. ICS demonstrated CD8 cells from mice immunized with Ad-AAV2 produced IFN-γ (3.5% of the CD8 cells) in response to Pool F (amino acid 119–145) while no IFN-γ release in CD8 cells was detected with Pool A to E (mean 0.28%±0.25%) compared to the media control (0.16%). This detection of IFN-γ release from CD8 T cells indicates a specific proliferation to a peptide(s) within this peptide pool (Pool F). A matrix approach was used to further define which peptide(s) contained the immunodominant epitope. Eleven small peptide pools of Pool F were created in which each peptide was represented in 2 pools. ICS of splenocytes from immunized (Ad-AAV2 capsid) C57Bl/6 mice demonstrated IFN-γ response from CD8 cells to 3 of the matrix pools corresponding to peptide 140 (PEIQYTSNYNKSVNV) and 141 (TSNYNKSVNVDFTVD) compared with media controls. To determine the exact peptide sequence that binds to the MHC Class I molecule, 9 amino acid peptides (n=7) were created that overlap peptide 140 and 141. Peptide SNYNKSVNV showed positive staining for both CD8 and IFN- γ(3.2%) compared with the six other peptides (0.14%±0.08%), media control (0.08%) and mice that were not immunized (0.11%). This epitope lies in the C terminus of the AAV2 VP1 capsid protein. Current studies using strains of mice with different MHC H2 haplotypes will allow us to determine which of the C57Bl/6 MHC alleles the epitope binds. These findings will provide us with a powerful tool for assessing immune responses to AAV capsid in the context of gene therapy. Specifically, they will allow us to determine how long immunologically detectable capsid sequences persist in an animal injected with AAV vectors. This in turn will provide a basis for a clinical study in which subjects are transiently immunosuppressed, from the time of vector injection until capsid epitopes are no longer detectable by the immune system.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 951-951
Author(s):  
Ettore Biagi ◽  
Giampietro Dotti ◽  
Eric Yvon ◽  
Raphael Rousseau ◽  
Edward Lee ◽  
...  

Abstract CD40 ligand is an accessory signal for T-cell activation and can overcome T-cell anergy. The OX40-OX40 ligand pathway is involved in the subsequent expansion of memory T cells. We expressed both human CD40L and OX40L on B-Chronic Lymphocytic Leukemia (B-CLL) cells, by exploiting the phenomenon of molecular transfer from fibroblasts engineered to over-express both of these TNF-receptor superfamily members. We analyzed the effects of the modified B-CLL cells on the number, phenotype and cytotoxic function of autologous T cells in seven B-CLL patients. Transfer of CD40L and OX40L to B-CLL cells was observed in all patients (mean value from 1% pre to 76% post for CD40L; from 0.7% pre to 88% post for OX40L). Subsequent up-regulation of the costimulatory molecules CD80 (B7-1) and CD86 (B7-2) was obtained after engagement of the endogenous CD40 receptor on B-CLL by the transferred CD40L molecules (mean value from 8% pre to 64% post for CD80; from 36% pre to 95% post for CD86). Co-culture of modified and unmodified B-CLL cells with autologous T cells revealed profound differences in the immune responses they induced. With unmodified B-CLL cells, or cells expressing either CD40L or OX40L individually, less than a 10-fold expansion of autologous T cells was observed, with a <100-fold expansion in tumor reactive T cells (measured by IFN-gamma Elispot with autologous B-CLL cells as stimulators, and allogeneic B-CLL cells as controls). By contrast, co-culture with B-CLL cells expressing both CD40L and OX40L induced a >40 fold expansion of autologous T cells - including both CD8+ T cells and CD4+ T cells with a Th1 pattern of cytokine release - and a >2500-fold increase in leukemia-reactive T cells. These expanded T cells were also directly cytotoxic to B-CLL targets, producing a mean 48% B-CLL killing at an E:T ratio of 10:1. A proportion of these tumor-reactive CD8+ T cells were specific for survivin, a B-CLL associated tumor antigen. Hence the combination of CD40L and OX40L expression by B-CLL cells allows generation of potent immune responses to B-CLL, which may be exploitable either by using active immunization with CD40L/OX40L-modified tumor cells or by adoptive immunotherapy with CD40L/OX40L generated tumor-reactive T cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3267-3267
Author(s):  
Lauren T. Southerland ◽  
Jian-Ming Li ◽  
Sohrab Hossain ◽  
Cynthia Giver ◽  
Wayne Harris ◽  
...  

Abstract Background: The severe morbidity and mortality associated with bone marrow transplantation (BMT) is caused by uninhibited immune responses to alloantigen and suppressed immune responses to pathogens. Vasoactive Intestinal Peptide (VIP) is an immunomodulatory neuropeptide produced by T-cells and nerve fibers in peripheral lymphoid organs that suppresses immune responses by induction of tolerogenic dendritic cells. In order to determine the immunoregulatory effects of VIP, we examined T-cell immune responses to allo- and viral-antigens in VIP knockout (KO) mice and mouse BMT recipients of hematopoietic cells from VIP KO donors. Methods: VIP KO mice and VIP WT littermates were infected with lethal or sub-lethal doses (5 × 104− 5 × 105 PFU) of murine cytomegalovirus (mCMV) and the T-cell response to viral antigen was measured by flow cytometry for mCMV peptide-MHC class 1-tetramer+ CD8+ T-cells. We transplanted 5 × 106 BM plus 1 × 106 splenocytes (SP) either from VIP KO or VIP WT donors in an C57BL/6 to F1(BL/6 × Balb/c) allo-BMT model and assessed survival, GvHD, donor T-cell expansion, chimerism, and response to mCMV vaccination and mCMV infection. Results: B-cell, αβ and γδ T-cell, CD8+ T-cell, CD11b+ myeloid cell, and dendritic cell numbers were equivalent between VIP KO and WT mice, while VIP KO mice had higher number of CD4+ and CD4+CD62L+CD25+ T-cells. Non-transplanted VIP KO mice survived mCMV infection better compared to VIP WT, with a brisker anti-viral T-cell response in the blood. In the allogeneic BMT setting, recipients of VIP KO BM plus VIP KO SP had more weight loss and lower (40%) 100 day post-transplant survival compared to the recipients of VIP KO BM plus WT SP (80% survival), recipients of WT BM plus KO SP (100% survival), and recipients of WT BM plus WT SP (80% survival). Recipients of VIP KO grafts had a significantly greater anti-mCMV response that peaked four days earlier than the tetramer response of mice transplanted with WT cells. This increased anti-viral response to vaccination correlated with a greater and more rapid T-cell response to secondary viral challenge. Conclusions: These experiments suggest that the absence of all VIP in the body, or the absence of VIP in a transplanted immune system, enhances anti-viral immunity and allo-immune responses. Modulation of the VIP pathway is a novel method to regulate post-transplant immunity. Figure 1: VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day. Figure 1:. VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 144-144
Author(s):  
Mohammad S Hossain ◽  
David L Jaye ◽  
Brian P Pollack ◽  
Alton B Farr ◽  
John Roback ◽  
...  

Abstract Abstract 144 In MHC-mismatched allogeneic hematopoietic stem cell transplantation (allo-HSCT), host antigen specific donor T cells mediate acute and chronic graft-versus-host disease (GvHD). Based upon the radio-protective effects of flagellin, a TLR5 agonist protein (∼50 kDa) extracted from bacterial flagella, we reasoned that flagellin might modulate donor T cells immune responses toward host antigens, reduce GvHD, and improve immune responses to CMV infection in experimental models of allogeneic HSCT. Two 50mg/mouse i.p doses of highly purified flagellin were administered 3 hrs before irradiation and 24 hrs after allo-HSCT in H-2b ^ CB6F1 and H-2k ^ B6 models. GvHD scores were obtained with weekly clinical examination and with histological scoring of intestine, colon, liver and skin at necropsy. Flagellin treatment successfully protected allo-HSCT recipients from acute and chronic GvHDs after transplantation of 5×106 splenocytes and 5×106 T cell depleted (TCD) BM, and significantly increased survival compared to PBS-treated control recipients. Reduced acute GvHD was associated with significant reduction of a) early post-transplant proliferation of donor CD4+ and CD8+ T cells measured by Ki67 and CFSE staining, b) fewer CD62L+, CD69+, CD25+, ICOS-1+ and PD-1+ donor CD4+ and CD8+ T cells compared with the PBS-treated control recipients. Decreased numbers of activated and proliferating donor T cells were associated with significantly reduced pro-inflammatory serum IFN-g, TNF-a, and IL-6 on days 4–10 post transplant in flagellin-treated recipients compared with the PBS-treated recipients. Interestingly, both flagellin-treated recipients and PBS-treated recipients had over 99% donor T cell chimerism at 2 months post transplant. Moreover, MCMV infection on 100+ days post-transplant flagellin-treated mice significantly enhanced anti-viral immunity, including more donor MCMV-peptide-tetramer+ CD8+ T cells in the blood (p<0.05), and less MCMV in the liver on day 10 post infection (p<0.02) compared with the PBS-treated control recipients. Overall immune reconstitution after flagellin-treatment was robust and associated with larger numbers of CD4+CD25+foxp3+ regulatory T cells in the thymus. To further define the role of flagellin-TLR5 agonistic interactions in the reduction of GvHD, we next generated B6 ^ TLR5 KO (KO) and KOB^6 radiation chimeras by transplanting 10 × 106 BM cells from wild-type (WT) B6 or TLR5 KO donors into the congenic CD45.1+ B6 or KO recipients conditioned with 11Gy (5.5Gyx2) TBI. The radiation chimeras were irradiated again with 9.0Gy (4.5Gy × 2) on 60 days after the first transplant and transplanted with 3 × 106 splenocytes and 5 × 106 TCD BM from H-2K congenic donors. Two 50mg doses of flagellin were administered 3 hrs before irradiation and 24 hrs after HSCT. All flagellin-treated B6 ^ B6 radiation chimeras survived with only 12% weight-loss by 80 days post transplant compared with 50% survival among recipients of flagellin-treated B6 ^ KO and 40% survival among KO ^ B6 radiation chimeras. All flagellin-treated KO^ KO and PBS-treated radiation chimeras died within 65 days post transplant. These data suggested that interaction of flagellin with the TLR5 expressing host gut epithelium and donor hematopoietic cells are both required for the maximum protective effect of this TLR5 agonist on GvHD in allogeneic HSCT recipients. Together our data demonstrate that peritransplant administration of flagellin effectively controls acute and chronic GvHD while preserving enhanced post-transplant donor anti-opportunistic immunity. Since flagellin has been found to be safe for use in humans as vaccine adjuvant in a number of clinical trials, the clinical use of flagellin in the setting of allogeneic HSCT is of interest. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3592-3592
Author(s):  
Susanne Hofmann ◽  
Vanessa Schneider ◽  
Lars Bullinger ◽  
Yoko Ono ◽  
Anita Schmitt ◽  
...  

Abstract Abstract 3592 Nucleophosmin gene 1 mutations (NPM1mut) are one of the most frequent molecular alterations in AML and distinct immune responses might contribute to the favorable prognosis of AML patients with NPM1mut. Recently, we showed specific T cell responses of CD4+ and CD8+ T cells against epitopes derived from mutated regions of NPM1 (Greiner et al., Blood. 2012 May 16, Epub). In the present study, we investigated clinical parameters and the clinical outcome of NPM1mut AML patients in accordance to their immune responses against different NPM1 epitopes. Moreover, we examined the quantitative expression of different leukemia-associated antigens (LAAs) in NPM1mutAML patients. In ELISpot analysis of 33 healthy volunteers and 27 AML patients, we detected T cell responses of CD4+ and CD8+ T cells against epitopes derived from the mutated region of NPM1. We performed further tetramer assays against the most interesting epitopes and chromium release assays to show the cytotoxicity of peptide-specific T cells. Microarray analysis was performed to analyze the expression of different LAAs in NPM1mut and NPM1wtAML patients. Two epitopes (peptide #1 and #3) derived from NPM1mut induced CD8+ T cell responses. 33% of the NPM1mut AML patients showed immune responses against peptide #1 and 44% against peptide #3. NPM1mut AML patients showed a significantly higher frequency of T cell responses against peptide #3 in contrast to HVs (p=0.046), whereas for peptide #1 the frequency of T cell responses of AML NPM1mut patients and HVs was not significantly different. Specific lysis of pulsed T2 cells but also NPM1mut leukemic blasts was detected in chromium release assays. Therefore, overlapping peptides (OL) were analyzed in ELISpot assays and the peptide called OL8 showed favorable results to activate both CD8+ and CD4+ T cells. We performed survival analysis for these 33 NPM1mut patients analyzed by ELISpot comparing cases with or without specific T cell responses. Our data suggest a trend to a better overall survival (OS) for patients with specific T cell responses against peptide #1 or #3. However, the patient numbers are small and the data have to be interpreted carefully. Analyses with material from larger controlled clinical trials with a high number of patients with NPM1mut AML have to be performed. Our microarray analysis of 30 AML patients showed a high expression of different LAAs like RHAMM, WT-1 and BCL-2 in all subtypes of cells of NPM1mutAML patients, also in leukemic progenitor cells. This demonstrates that NPM1 is an AML subtype suitable for poly-targeted immunotherapeutic trials. Taken together, NPM1mut might constitute an interesting target structure for individualized immunotherapeutic approaches in NPM1mut AML patients. We hypothesize that immune responses to NPM1 mutation may contribute to the favorable prognosis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document