scholarly journals Addition of Fructooligosaccharides and Dried Plum to Soy-Based Diets Reverses Bone Loss in the Ovariectomized Rat

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Catherine D. Johnson ◽  
Edralin A. Lucas ◽  
Shirin Hooshmand ◽  
Sara Campbell ◽  
Mohammed P. Akhter ◽  
...  

Dietary bioactive components that play a role in improving skeletal health have received considerable attention in complementary and alternative medicine practices as a result of their increased efficacy to combat chronic diseases. The objectives of this study were to evaluate the additive or synergistic effects of dried plum and fructooligosaccharides (FOS) and to determine whether dried plum and FOS or their combination in a soy protein-based diet can restore bone mass in ovarian hormone deficient rats. For this purpose, 72 3-month-old female Sprague-Dawley rats were divided into six groups (n= 12) and either ovariectomized (Ovx, five groups) or sham-operated (sham, one group). The rats were maintained on a semipurified standard diet for 45 days after surgery to establish bone loss. Thereafter, the rats were placed on one of the following dietary treatments for 60 days: casein-based diet (Sham and Ovx), soy-based diet (Ovx + soy) or soy-based diet with dried plum (Ovx + soy + plum), FOS (Ovx + soy + FOS) and combination of dried plum and FOS (Ovx + soy + plum + FOS). Soy protein in combination with the test compounds significantly improved whole-body bone mineral density (BMD). All test compounds in combination with soy protein significantly increased femoral BMD but the combination of soy protein, dried plum and FOS had the most pronounced effect in increasing lumbar BMD. Similarly, all of the test compounds increased ultimate load, indicating improved biomechanical properties. The positive effects of these test compounds on bone may be due to their ability to modulate bone resorption and formation, as shown by suppressed urinary deoxypyridinoline excretion and enhanced alkaline phosphatase activity.

2018 ◽  
Vol 119 (10) ◽  
pp. 1111-1118 ◽  
Author(s):  
Monika Sobol ◽  
Stanisława Raj ◽  
Grzegorz Skiba

AbstractConsumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.


2008 ◽  
Vol 26 (27) ◽  
pp. 4426-4434 ◽  
Author(s):  
Susan L. Greenspan ◽  
Joel B. Nelson ◽  
Donald L. Trump ◽  
Julie M. Wagner ◽  
Megan E. Miller ◽  
...  

Purpose Androgen-deprivation therapy (ADT) for prostate cancer is associated with bone loss and osteoporotic fractures. Our objective was to examine changes in bone density and turnover with sustained, discontinued, or delayed oral bisphosphonate therapy in men receiving ADT. Patients and Methods A total of 112 men with nonmetastatic prostate cancer receiving ADT were randomly assigned to alendronate 70 mg once weekly or placebo in a double-blind, partial-crossover trial with a second random assignment at year 2 for those who initially received active therapy. Outcomes included bone mineral density and bone turnover markers. Results Men initially randomly assigned to alendronate and randomly reassigned at year 2 to continue had additional bone density gains at the spine (mean, 2.3% ± 0.7) and hip (mean, 1.3% ± 0.5%; both P < .01); those randomly assigned to placebo in year 2 maintained density at the spine and hip but lost (mean, −1.9% ± 0.6%; P < .01) at the forearm. Patients randomly assigned to begin alendronate in year 2 experienced improvements in bone mass at the spine and hip, but experienced less of an increase compared with those who initiated alendronate at baseline. Men receiving alendronate for 2 years experienced a mean 6.7% (± 1.2%) increase at the spine and a 3.2% (± 1.5%) at the hip (both P < .05). Bone turnover remained suppressed. Conclusion Among men with nonmetastatic prostate cancer receiving ADT, once-weekly alendronate improves bone density and decreases turnover. A second year of alendronate provides additional skeletal benefit, whereas discontinuation results in bone loss and increased bone turnover. Delay in bisphosphonate therapy appears detrimental to bone health.


Endocrinology ◽  
2014 ◽  
Vol 155 (6) ◽  
pp. 2178-2189 ◽  
Author(s):  
M. P. Mosti ◽  
A. K. Stunes ◽  
M. Ericsson ◽  
H. Pullisaar ◽  
J. E. Reseland ◽  
...  

Estrogen deficiency promotes bone loss and skeletal muscle dysfunction. Peroxisome proliferator-activated receptors (PPARs) have 3 subtypes (α, δ, and γ). PPARγ agonists induce bone loss, whereas PPARα agonists increase bone mass. Although PPARδ agonists are known to influence skeletal muscle metabolism, the skeletal effects are unsettled. This study investigated the musculoskeletal effects of the PPARδ agonist GW501516 in ovariectomized (OVX) rats. Female Sprague Dawley rats, 12 weeks of age, were allocated to a sham-operated group and 3 OVX groups; high-dose GW501516 (OVX-GW5), low-dose GW501516 (OVX-GW1), and a control group (OVX-CTR), respectively (n = 12 per group). Animals received GW501516 or vehicle (methylcellulose) daily for 4 months by gavage. Bone mineral density (BMD) was assessed by dual x-ray absorptiometry at the femur, spine, and whole body. Bone microarchitecture at the proximal tibia was assessed by microcomputed tomography, and dynamic histomorphometry was performed. Quadriceps muscle morphology and the relative expression of mitochondrial proteins were analyzed. Bone metabolism markers and metabolic markers were measured in plasma. After 4 months, the OVX-GW5 group displayed lower femoral BMD than OVX-CTR. Trabecular separation was higher in the GW-treated groups, compared with OVX-CTR. The OVX-GW5 group also exhibited lower cortical area fraction and a higher structure model index than OVX-CTR. These effects coincided with impaired bone formation in both GW groups. The OVX-GW5 group displayed elevated triglyceride levels and reduced adiponectin levels, whereas no effects on muscle morphology or mitochondrial gene expression appeared. In summary, the PPARδ agonist GW501516 negatively affected bone properties in OVX rats, whereas no effects were detected in skeletal muscle.


2007 ◽  
Vol 97 (4) ◽  
pp. 776-785 ◽  
Author(s):  
Alexandre R. Lobo ◽  
Célia Colli ◽  
Eliana P. Alvares ◽  
Tullia M. C. C. Filisetti

Yacon roots have been considered a functional food due to the high levels of fructans they contains. In the present study, Ca and Mg balance, bone mass and strength, and caecum mucosal morphometry were evaluated. Growing male Wistar rats (n24) were fedad libitumcontrol diets or diets supplemented with yacon flour (5 or 7·5 % fructooligosaccharides) for 27 d. Mineral balance was evaluated in three periods of 5 d (starting on the 4th, 10th and 16th days). After the rats were killled, the bones were removed and bone mineral density was measured. Ca analyses were performed on left femurs and tibias and biomechanical testing on right femurs. The caecum was removed and tissue samples were collected for histological analysis. Caecal histology changed noticeably in rats fed yacon flour: there was an increase in the depth and number of total and bifurcated crypts as well. Yacon flour consumption significantly (P < 0·05) resulted in a positive Ca and Mg balance, leading to higher values of bone mineral retention and biomechanical properties (peak load and stiffness) when compared to the control group. The positive effects on mineral intestinal absorption, bone mass and biomechanical properties showed an important role of yacon roots in the maintenance of healthy bones. The increased number of bifurcating crypts might be related to the higher mineral absorption caused by the enlargement of the absorbing surface in the large intestine of the animals.


2007 ◽  
Vol 86 (11) ◽  
pp. 1110-1114 ◽  
Author(s):  
K.R. Phipps ◽  
B.K.S. Chan ◽  
T.E. Madden ◽  
N.C. Geurs ◽  
M.S. Reddy ◽  
...  

Bone loss is a feature of both periodontitis and osteoporosis, and periodontal destruction may be influenced by systemic bone loss. This study evaluated the association between periodontal disease and bone mineral density (BMD) in a cohort of 1347 (137 edentulous) older men followed for an average of 2.7 years. Participants were recruited from the Osteoporotic Fractures in Men Study. Random half-mouth dental measures included clinical attachment loss (CAL), pocket depth (PD), calculus, plaque, and bleeding. BMD was measured at the hip, spine, and whole-body, by dual-energy x-ray absorptiometry, and at the heel by ultrasound. After adjustment for age, smoking, race, education, body mass index, and calculus, there was no association between number of teeth, periodontitis, periodontal disease progression, and either BMD or annualized rate of BMD change. We found little evidence of an association between periodontitis and skeletal BMD among older men.


2001 ◽  
Vol 86 (4) ◽  
pp. 521-527 ◽  
Author(s):  
Joseé Gala ◽  
Manuel Di´az-curiel ◽  
Concepcioó de la Piedra ◽  
Jesu´s Calero

At the level of prevention of bone mineral loss produced by ovariectomy, the aim of the present study was to determine the effect produced by supplementation of Ca in the diet and a moderate exercise programme (treadmill), simultaneously or separately, in ovariectomized rats, an experimental model of postmenopausal bone loss. Female Wistar rats (n110, 15 weeks old) were divided into five groups: (1) OVX, rats ovariectomized at 15 weeks of age, fed a standard diet; (2) SHAM, rats sham operated at 15 weeks of age, fed a standard diet; (3) OVX–EX, ovariectomized rats, fed a standard diet and performing the established exercise programme; (4) OVX–Ca, ovariectomized rats fed a diet supplemented with Ca; (5) OVX–EXCa, ovariectomized rats with the exercise programme and diet supplemented with Ca. The different treatments were initiated 1 week after ovariectomy and were continued for 13 weeks for subgroup 1 and 28 weeks for subgroup 2, to look at the interaction of age and time passed from ovariectomy on the treatments. Bone mineral density (BMD) was determined, at the end of the study, in the lumbar spine (L2, L3 and L4) and in the left femur using a densitometer. Bone turnover was also estimated at the end of the study, measuring the serum formation marker total alkaline phosphatase (AP) and the resorption marker serum tartrate-resistant acid phosphatase (TRAP). As expected, OVX rats showed a significant decrease (P<0·05) in BMD, more pronounced in subgroup 2, and a significant increase in AP and TRAP with regard to their respective SHAM group. The simultaneous treatment with Ca and exercise produced the best effects on lumbar and femoral BMD of ovariectomized rats, partially avoiding bone loss produced by ovariectomy, although it was not able to fully maintain BMD levels of intact animals. This combined treatment produced a significant increase in AP, both in subgroups 1 and 2, and a decrease in TRAP in subgroup 1, with regard to OVX group. The exercise treatment alone was able to produce an increase in BMD with regard to OVX group only in subgroup 1 of rats (younger animals and less time from ovariectomy), but not in subgroup 2. In agreement with this, there was an increase of AP in both subgroups, lower than that observed in animals submitted to exercise plus Ca supplement, and a decrease of TRAP in subgroup 1, without significant changes in this marker in the older rats. Ca treatment did not produce any significant effect on BMD in OVX rats in both subgroups of animals, showing a decrease of AP and TRAP levels in the younger animals with no significant variations in markers of bone remodelling in the older female rats compared with their respective OVX group.


2016 ◽  
Vol 231 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Donlaporn Kittivanichkul ◽  
Narattaphol Charoenphandhu ◽  
Phisit Khemawoot ◽  
Suchinda Malaivijitnond

Since the in vitro and in vivo anti-osteoporotic effects of Pueraria mirifica (PM) in rodents have been verified, its activity in menopausal monkeys was evaluated as required before it can be applicable for human use. In this study, postmenopausal osteoporotic monkeys were divided into two groups (five per group), and fed daily with standard diet alone (PMP0 group) or diet mixed with 1000 mg/kg body weight (BW) of PM powder (PMP1000 group) for 16 months. Every 2 months, the bone mineral density (BMD), bone mineral content (BMC) and bone geometry parameters (cortical area and thickness and periosteal and endosteal circumference) at the distal radius and proximal tibia were determined using peripheral quantitative computed tomography together with plasma and urinary bone markers. Compared with the baseline (month 0) values, the cortical, but not trabecular, BMDs and BMCs and the cortical area and thickness at the metaphysis and diaphysis of the radius and tibia of the PMP0 group continuously decreased during the 16-month study period. In contrast, PMP1000 treatment ameliorated the bone loss mainly at the cortical diaphysis by decreasing bone turnover, as indicated by the lowered plasma bone-specific alkaline phosphatase and osteocalcin levels. Generally, changes in the cortical bone geometry were in the opposite direction to the cortical bone mass after PMP1000 treatment. This study indicated that postmenopausal monkeys continuously lose their cortical bone compartment, and they have a higher possibility for long bone fractures. Oral PMP treatment could improve both the bone quantity (BMC and BMD) and quality (bone geometry).


Dose-Response ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. 155932581881306 ◽  
Author(s):  
Debra Bemben ◽  
Christina Stark ◽  
Redha Taiar ◽  
Mario Bernardo-Filho

Beneficial effects are associated with whole-body vibration exercises (WBVEs). Increases in muscular strength/power, flexibility, and gait speed; improvements in bone mineral density, balance, and the quality of life; and decreased pain and risk of falls are reported. The aim is to present a review about the importance of WBVE for elderly individuals, considering clinical studies and meta-analyses, on bone and muscle strength/power. There is evidence supporting beneficial effect of WBVE in postmenopausal women (PW); however, effects in PW with osteoporosis are unclear. Age-related decrease in muscle mass and function contribute to undesirable health conditions, including death risk. The WBVEs improve muscle strength/power, functional independence measure, balance, and various fall risk factors, and mobility, measured by Timed Up and Go test, increased significantly after WBVE. An explanation for the absence of positive effects in some outcomes could be related to discrepancies in WBVE protocols as well as the populations tested. It is concluded that WBVE is effective for counteracting the loss of muscle strength associated with sarcopenia in elderly individuals. Balance and leg and plantar flexor strength improvements due to WBV indicate benefit to reduce risk and incidence of falls, frailty, and fracture risks. However, long-term feasibility of WBVE for musculoskeletal and bone health in elderly individuals needs further investigation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Corinne E. Metzger ◽  
S. Anand Narayanan ◽  
Jon P. Elizondo ◽  
Anne Michal Carter ◽  
David C. Zawieja ◽  
...  

Abstract Chronic pediatric inflammatory bowel disease (IBD) leads to lack of bone accrual, bone loss, and increased fractures. Presently there is no cure, and many IBD treatments incur negative side effects. We previously discovered treatment with exogenous irisin resolved inflammatory changes in the colon, gut lymphatics, and bone in a mild IBD rodent model. Here we assess irisin treatment in severe IBD induced via dextran sodium sulfate (DSS). Male Sprague Dawley rats (2-mo-old) were untreated (Con) or given 2% DSS in drinking water. In week two, half of each group (Con + Ir and DSS + Ir) received injections of recombinant irisin (i.p., 2x/wk). After 4 weeks, gut inflammation was associated with declines in bone mineral density and cancellous bone volume. Furthermore, elevated osteocyte TNF-α, interleukin-6, RANKL, OPG, and sclerostin corresponded with higher osteoclast surfaces and lower bone formation rate in DSS animals as well as lower ultimate load. While irisin treatment improved colon inflammation, there were no improvements in bone density or bone mechanical properties; however, irisin elevated bone formation rate, decreased osteoclast surfaces, and reduced osteocyte pro-inflammatory factors. These data highlight the negative impact of chronic gut inflammation on bone as well as the therapeutic potential of irisin as an anti-inflammatory treatment.


2008 ◽  
Vol 101 (7) ◽  
pp. 1031-1039 ◽  
Author(s):  
Sun-Hye Lim ◽  
Tae-Youl Ha ◽  
Sung-Ran Kim ◽  
Jiyun Ahn ◽  
Hyun Jin Park ◽  
...  

The aim of the present study was to investigate whether ethanol extracts of Psoralea corylifolia L. (PCE) and its active component protect against bone loss in ovariectomised rats. We screened oestrogenic activities of the main extract fractions using in vitro assays and identified bakuchiol as the most active oestrogenic component by HPLC and LC/MS, and then demonstrated that bakuchiol had strong binding affinity for oestrogen receptor (ER) α. Seventy female Sprague–Dawley rats were assigned to either a sham-operated group (n 10) or an ovariectomised group (n 60). The ovariectomised group was subdivided into six groups, each containing ten rats: vehicle group, two bakuchiol-treated groups (dose of 15 mg/kg per d or 30 mg/kg per d; ten rats for each group), two PCE-supplemented groups (0·25 % or 0·5 % extracts of diets; ten rats for each group) and a 17β-oestradiol (E2)-treated group (20 μg/kg per d). We recorded weight and feed intake every week, and killed all animals after 6 weeks. Blood was collected, and the uterus, kidneys and livers were removed. Bakuchiol has a three-fold higher binding affinity for ERα than for ERβ. Bakuchiol and PCE treatments had no uterotrophic activity even though they demonstrated oestrogenic activity in the in vitro assays. Bakuchiol and PCE treatments reduced postmenopausal bone loss by increasing alkaline phosphatase, Ca concentrations, serum E2 concentration and bone mineral density, and by decreasing the inorganic P level. The present study indicated that bakuchiol and PCE treatments could protect against bone loss.


Sign in / Sign up

Export Citation Format

Share Document