scholarly journals New Environment, New Invaders—Repeated Horizontal Transfer of LINEs to Sea Snakes

2020 ◽  
Vol 12 (12) ◽  
pp. 2370-2383 ◽  
Author(s):  
James D. Galbraith ◽  
Alastair J. Ludington ◽  
Alexander Suh ◽  
Kate L. Sanders ◽  
David L. Adelson

Abstract Although numerous studies have found horizontal transposon transfer (HTT) to be widespread across metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into marine species, we searched for novel repetitive elements in sea snakes, a group of elapids which transitioned to a marine habitat at most 18 Ma. Our analysis uncovered repeated HTTs into sea snakes following their marine transition. The seven subfamilies of horizontally transferred LINE retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are likely still active and expanding across the genome. A search of 600 metazoan genomes found all seven were absent from other amniotes, including terrestrial elapids, with the most similar LINEs present in fish and marine invertebrates. The one exception was a similar LINE found in sea kraits, a lineage of amphibious elapids which independently transitioned to a marine environment 25 Ma. Our finding of repeated horizontal transfer events into marine snakes greatly expands past findings that the marine environment promotes the transfer of transposons. Transposons are drivers of evolution as sources of genomic sequence and hence genomic novelty. We identified 13 candidate genes for HTT-induced adaptive change based on internal or neighboring HTT LINE insertions. One of these, ADCY4, is of particular interest as a part of the KEGG adaptation pathway “Circadian Entrainment.” This provides evidence of the ecological interactions between species influencing evolution of metazoans not only through specific selection pressures, but also by contributing novel genomic material.

2020 ◽  
Author(s):  
James D. Galbraith ◽  
Alastair J. Ludington ◽  
Alexander Suh ◽  
Kate L. Sanders ◽  
David L. Adelson

AbstractWhile numerous studies have found horizontal transposon transfer (HTT) to be widespread across metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into marine species we searched for novel repetitive elements in sea snakes, a group of elapids which transitioned to a marine habitat at most 18 Mya. Our analysis uncovered repeated HTTs into sea snakes following their marine transition. Such major shifts in habitat should require significant genomic changes.The seven subfamilies of horizontally transferred LINE retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are likely still active and expanding across the genome. A search of 600 metazoan genomes found all seven were absent from other amniotes, including terrestrial elapids, with the most similar transposons present in fish and marine invertebrates. The one exception was a similar transposon found in sea kraits, a lineage of amphibious elapids which independently transitioned to a marine environment following their divergence from terrestrial species 25 Mya. Our finding of repeated horizontal transfer events into separate lineages of marine snakes greatly expands past findings of frequent horizontal transfer in the marine environment, suggesting it is ideal for the transfer of transposons.Transposons are drivers of evolution as sources of genomic sequence and hence genomic novelty. This provides evidence of the environment influencing evolution of metazoans not only through specific selection pressures, but also by contributing novel genomic material.


2020 ◽  
Vol 8 (9) ◽  
pp. 661
Author(s):  
Davide Asnicar ◽  
Costanza Cappelli ◽  
Ahmad Safuan Sallehuddin ◽  
Nur Atiqah Maznan ◽  
Maria Gabriella Marin

Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup® and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup® formulation seemed to be less toxic than the glyphosate alone.


2018 ◽  
Vol 35 ◽  
pp. 1-5
Author(s):  
Adriana P. Rebolledo ◽  
Rachel Collin

. Although larval stages are often considered particularly vulnerable to stressors, for many marine invertebrates studies of thermal tolerance have focused on adults. Here we determined the upper thermal limit (LT50) of the zoea I of four Caribbean crab species (Macrocoelomatrispinosum, Aratuspisonii, Armasesricordi, and Minucarapax) and compared their thermal tolerance over time and among species. The zoea from the subtidal species M.trispinosum and tree climbing mangrove species A.pisonii had a lower thermal tolerance, 35 and 38.5 °C respectively, than did the semiterrestrial A.ricordi and M.rapax. In all four species tested, the estimates of thermal tolerance depend on the duration of exposure to elevated temperatures. Longer exposures to thermal stress produce lower estimates of LT50, which decreased by ~1 °C from a two- to a six-hour exposure. Crab embryos develop on the abdomen of the mother until the larvae are ready to hatch. Therefore, the thermal tolerances of the embryos which need to coincide with the environmental conditions experienced by the adult stage, may carry over into the early zoea stage. Our results suggest that semiterrestrial species, in which embryos may need to withstand higher temperatures than embryos of subtidal species also produce larvae with higher thermal tolerances. Over the short term, the larvae of these tropical crab species can withstand significantly higher temperatures than those experienced in their marine habitat. Longer term rearing studies are necessary to determine the temperature at which chronic exposure has a negative impact on embryonic and larval survival.


Author(s):  
Guangyi Fan ◽  
Jianwei Chen ◽  
Tao Jin ◽  
Chengcheng Shi ◽  
Xiao Du ◽  
...  

With the continuing development of sequencing technology, genomics has been applied in a variety of biological research areas. In particular, the application of genomics to marine species, which boast a high diversity, promises great scientific and industrial potential. Significant progress has been made in marine genomics especially over the past few years. Consequently, BGI, leveraging its prominent contributions in genomics research, established BGI-Qingdao, an institute specifically aimed at exploring marine genomics. In order to accelerate marine genomics research and related applications, BGI-Qingdao initiated the International Conference on Genomics of the Ocean (ICG-Ocean) to develop international collaborations and establish a focused and coherent global research plan. Last year, the first ICG-Ocean conference was held in Qingdao, China, during which 47 scientists in marine genomics from all over the world reported on their research progress to an audience of about 300 attendees. This year, we would like to build on that success, drafting a report on marine genomics to draw global attention to marine genomics. We summarized the recent progress, proposed future directions, and we would like to enable additional profound insights on marine genomics. Similar to the annual report on plant and fungal research by Kew Gardens, and the White Paper of ethical issues on experimental animals, we hope our first report on marine genomics can provide some useful insights for researchers, funding agencies as well as industry, and that future versions will expand upon the foundation established here in both breadth and depth of knowledge.This report summarizes the recent progress in marine genomics in six parts including: marine microorganisms, marine fungi, marine algae and plants, marine invertebrates, marine vertebrates and genomics-based applications.


2010 ◽  
Vol 20 (supp01) ◽  
pp. 1511-1532 ◽  
Author(s):  
S. POMPEI ◽  
E. CAGLIOTI ◽  
V. LORETO ◽  
F. TRIA

Phylogenetic methods have recently been rediscovered in several interesting areas among which immunodynamics, epidemiology and many branches of evolutionary dynamics. In many interesting cases the reconstruction of a correct phylogeny is blurred by high mutation rates and/or horizontal transfer events. As a consequence, a divergence arises between the true evolutionary distances and the distances between pairs of taxa as inferred from the available data, making the phylogenetic reconstruction a challenging problem. Mathematically this divergence translates in the non-additivity of the actual distances between taxa and the quest for new algorithms able to efficiently cope with these effects is wide open. In distance-based reconstruction methods, two properties of additive distances were extensively exploited as antagonist criteria to drive phylogeny reconstruction: on the one hand a local property of quartets, i.e. sets of four taxa in a tree, the four-point condition; on the other hand, a recently proposed formula that allows to write the tree length as a function of the distances between taxa, the Pauplin's formula. A deeper comprehension of the effects of the non-additivity on the inspiring principles of the existing reconstruction algorithms is thus of paramount importance. In this paper we present a comparative analysis of the performances of the most important distance-based phylogenetic algorithms. We focus in particular on the dependence of their performances on two main sources of non-additivity: back-mutation processes and horizontal transfer processes. The comparison is carried out in the framework of a set of generative algorithms for phylogenies that incorporate non-additivity in a tunable way.


2000 ◽  
Vol 14 (3) ◽  
pp. 327 ◽  
Author(s):  
Nils Møller Andersen ◽  
Tom A. Weir

Semiaquatic bugs (Heteroptera, infraorder Gerromorpha) are distributed worldwide with approximately 1,600 described species. Most species live in various types of freshwater habitats, but a little more than 10% have colonised the marine environment. The Australian fauna constitutes a significantly higher percentage of marine species (about 25%) than in any other continent. Among these are the coral treaders, Hermatobates Carpenter, belonging to the Hermatobatidae, one of very few insect families that only include marine species. In this paper the two species of Hermatobates previously known from Australia are redescribed and H. armatus, sp. nov. from the Chesterfield Islands in the Coral Sea is added. The distribution of species known from Australia and New Caledonia is mapped, and a revised key to the eight species currently recognised in the genus is presented. Finally, the available knowledge about the biology and ecology of coral treaders is reviewed and discussed.


1997 ◽  
Vol 54 (6) ◽  
pp. 1400-1407 ◽  
Author(s):  
R A Myers ◽  
G Mertz ◽  
J Bridson

We examine the spatial scale of variability in recruitment for 11 marine, three anadromous, and five freshwater species. Generally the spatial scale of recruitment correlations for marine species is approximately 500 km, compared with less than 50 km for freshwater; anadromous species fall between these two scales. The scale for marine species is comparable with (but less than) that of the largest-scale environmental variables (and is compatible with the idea that large-scale environmental agents influence recruitment). Our results are consistent with the hypothesis that predation is a more important factor in determining recruitment in freshwater than it is in the marine environment.


2017 ◽  
Vol 74 (9) ◽  
pp. 2298-2308 ◽  
Author(s):  
Jessica Melbourne-Thomas ◽  
Andrew J Constable ◽  
Elizabeth A Fulton ◽  
Stuart P Corney ◽  
Rowan Trebilco ◽  
...  

Abstract Policy- and decision-makers require assessments of status and trends for marine species, habitats, and ecosystems to understand if human activities in the marine environment are sustainable, particularly in the face of global change. Central to many assessments are statistical and dynamical models of populations, communities, ecosystems, and their socioeconomic systems and management frameworks. The establishment of a national system that could facilitate the development of such model-based assessments has been identified as a priority for addressing management challenges for Australia’s marine environment. Given that most assessments require cross-scale information, individual models cannot capture all of the spatial, temporal, biological, and socioeconomic scales that are typically needed. Coupling or integrating models across scales and domains can expand the scope for developing comprehensive and internally consistent, system-level assessments, including higher-level feedbacks in social–ecological systems. In this article, we summarize: (i) integrated modelling for marine systems currently being undertaken in Australia, (ii) methods used for integration and comparison of models, and (iii) improvements to facilitate further integration, particularly with respect to standards and specifications. We consider future needs for integrated modelling of marine social–ecological systems in Australia and provide a set of recommendations for priority focus areas in the development of a national approach to integrated modelling. These recommendations draw on—and have broader relevance for—international efforts around integrated modelling to inform decision-making for marine systems.


2003 ◽  
Vol 75 (11-12) ◽  
pp. 2249-2261 ◽  
Author(s):  
P. Matthiessen

This topic reviews the whole field of endocrine disruption (ED) in marine fish and compares this with our knowledge of the situation in freshwater species. In broad terms, similar types of ED have been observed in the two groups, although effects in the marine environment tend to be less marked, presumably due to dispersion and dilution. There are, however, some data which suggest that marine fish that are top-predators can experience ED due to biomagnification of organochlorines. Processes such as smoltification, metamorphosis, and hermaphroditism, which are common in some marine species, may be particularly susceptible to ED, but have as yet been scarcely studied. As with freshwater fish, firm links to population-level effects have not yet been demonstrated, although it is not unreasonable to suppose that they are occurring in some locations. The topic concludes with some recommendations for future research.


Sign in / Sign up

Export Citation Format

Share Document