scholarly journals Developing and testing a computer vision method to quantify 3D movements of bottom-set gillnets on the seabed

2017 ◽  
Vol 75 (2) ◽  
pp. 814-824 ◽  
Author(s):  
Esther Savina ◽  
Ludvig Ahm Krag ◽  
Niels Madsen

Abstract Gillnets are one of the most widely used fishing gears, but there is limited knowledge about their habitat effects, partly due to the lack of methodology to quantify such effects. A stereo imaging method was identified and adapted to quantify the dynamic behaviour of gillnets in-situ. Two cameras took synchronized images of the gear from slightly different perspectives, allowing to estimate the distance from the observation unit to the gear such as in the human 3D vision. The sweeping motion on the seabed and the penetration into the sediment of the leadline of light and heavy commercial bottom gillnets deployed in sandy habitats in the Danish coastal plaice fishery were assessed. The direct physical disruption of the seabed was minimal as the leadline was not penetrating into the seabed. Direct damage to the benthos could however originate from the sweeping movements of the nets, which were found to be higher than usually estimated by experts, up to about 2 m. The sweeping movements were for the most part in the order of magnitude of 10 cm, and resulted in a total swept area per fishing operation lower than any of the hourly swept area estimated for active fishing gears. Whereas the general perception is that heavy gears are more destructive to the habitat, light nets were moving significantly more than heavy ones. The established methodology could be further applied to assess gear dynamic behaviour in situ of other static gears.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kyle D. Duncan ◽  
Xiaofei Sun ◽  
Erin S. Baker ◽  
Sudhansu K. Dey ◽  
Ingela Lanekoff

AbstractProstaglandins are important lipids involved in mediating many physiological processes, such as allergic responses, inflammation, and pregnancy. However, technical limitations of in-situ prostaglandin detection in tissue have led researchers to infer prostaglandin tissue distributions from localization of regulatory synthases, such as COX1 and COX2. Herein, we apply a novel mass spectrometry imaging method for direct in situ tissue localization of prostaglandins, and combine it with techniques for protein expression and RNA localization. We report that prostaglandin D2, its precursors, and downstream synthases co-localize with the highest expression of COX1, and not COX2. Further, we study tissue with a conditional deletion of transformation-related protein 53 where pregnancy success is low and confirm that PG levels are altered, although localization is conserved. Our studies reveal that the abundance of COX and prostaglandin D2 synthases in cellular regions does not mirror the regional abundance of prostaglandins. Thus, we deduce that prostaglandins tissue localization and abundance may not be inferred by COX or prostaglandin synthases in uterine tissue, and must be resolved by an in situ prostaglandin imaging.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5032
Author(s):  
Alec Ikei ◽  
James Wissman ◽  
Kaushik Sampath ◽  
Gregory Yesner ◽  
Syed N. Qadri

In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d33 performance of up to 18 pC N−1, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carlos E. Ganade ◽  
Pierre Lanari ◽  
Daniela Rubatto ◽  
Joerg Hermann ◽  
Roberto F. Weinberg ◽  
...  

AbstractAbove subduction zones, magma production rate and crustal generation can increase by an order of magnitude during narrow time intervals known as magmatic flare-ups. However, the consequences of these events in the deep arc environment remain poorly understood. Here we use petrological and in-situ zircon dating techniques to investigate the root of a continental arc within the collisional West Gondwana Orogen that is now exposed in the Kabyé Massif, Togo. We show that gabbros intruded 670 million years ago at 20–25 km depth were transformed to eclogites by 620 million years ago at 65–70 km depth. This was coeval with extensive magmatism at 20–40 km depth, indicative of a flare-up event which peaked just prior to the subduction of the continental margin. We propose that increased H2O flux from subduction of serpentinized mantle in the hyper-extended margin of the approaching continent was responsible for the increased magma productivity and crustal thickening.


1999 ◽  
Vol 30 (3) ◽  
pp. 177-190 ◽  
Author(s):  
Per Atle Olsen

The hydraulic conductivity in structured soils is known to increase drastically when approaching saturation. Tension infiltration allows in situ infiltration of water at predetermined matric potentials, thus allowing exploration of the hydraulic properties near saturation. In this study, the near saturated (ψ≥-0.15 m) hydraulic conductivity was estimated both in the top- and sub-soil of three Norwegian soils. A priory analysis of estimation errors due to measurement uncertainties was conducted. In order to facilitate the comparison between soils and depths, scaling analysis was applied. It was found that the increase in hydraulic conductivity with increasing matric potentials (increasing water content) was steeper in the sub-soil than in the top-soil. The estimated field saturated hydraulic conductivity was compared with laboratory measurements of the saturated hydraulic conductivity. The geometric means of the laboratory measurements was in the same order of magnitude as the field estimates. The variability of the field estimates of the hydraulic conductivity from one of the soils was also assessed. The variability of the field estimates was generally smaller than the laboratory measurements of the saturated hydraulic conductivity.


Author(s):  
M. A. Boogaard ◽  
A. L. Schwab ◽  
Z. Li

As vibration based condition monitoring requires a good understanding of the dynamic behaviour of the structure, a good model is needed. At the TU Delft a train borne monitoring system is being developed which currently focusses on crossings. Crossings are prone to very fast degradation due to impact loading. In this paper a finite element model of a free floating frog is presented and validated up to a 100 Hz using dynamic impact measurements. The mode shapes of the free floating frog are then also compared to some preliminary results from an in-situ test. This comparison shows that the in-situ frequencies can be up to twice the free floating frequency.


2020 ◽  
Author(s):  
Jonathan Bouvette ◽  
Hsuan-Fu Liu ◽  
Xiaochen Du ◽  
Ye Zhou ◽  
Andrew P. Sikkema ◽  
...  

ABSTRACTTomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, we introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by an order of magnitude and improve map resolution by ~1-3 Å compared to existing approaches. We achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. We validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved.


1969 ◽  
Vol 8 (54) ◽  
pp. 427-440 ◽  
Author(s):  
R. Perla

AbstractModified versions ofin situstrength tests previously applied to metamorphosed snow were developed to measure the mechanical properties of newly fallen snow during storm periods. A large drop-cone penetrometer, protected from the wind by an aluminum shell, was used to determine snow “hardness”. A lightweight model of the Haefeli ram penetrometer measured “ram numbers”. Shear strengths were obtained from large, light-weight frames. Some preliminary tests were made with a shear vane driven by a torque wrench. A new technique was devised for measuring tensile strength whereby a cantilever beam of snow is undercut until it fails under its own weight. Comparisons between the cantilever test and the shear-frame test show high ratios for tensile to shear strength. Cantilever strength plotted against density shows an order of magnitude variation in strength at all densities.


2021 ◽  
Author(s):  
Weijie Sun ◽  
James Slavin ◽  
Anna Milillo ◽  
Ryan Dewey ◽  
Stefano Orsini ◽  
...  

Abstract At Mercury, several processes can release ions and neutrals out of the planet’s surface. Here we present enhancements of dayside planetary ions in the solar wind entry layer during flux transfer event (FTE) “showers” near Mercury’s northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e. planetward) toward the cusps, which sputter upward-moving planetary ions within 1 minute. The precipitation rate is enhanced by an order of magnitude during FTE showers and the neutral density of the exosphere can vary by >10% due to this FTE-driven sputtering. These in situ observations of enhanced planetary ions in the entry layer likely correspond to an escape channel of Mercury’s planetary ions, and the large-scale variations of the exosphere observed on minute-timescales by ground-based telescopes. Comprehensive, future multi-point measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury’s dynamic exosphere and magnetosphere.


2007 ◽  
Vol 4 (4) ◽  
pp. 2441-2491 ◽  
Author(s):  
M. S. Twardowski ◽  
H. Claustre ◽  
S. A. Freeman ◽  
D. Stramski ◽  
Y. Huot

Abstract. During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10−5, 5×10−6, and 2×10−6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: – bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: – The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; – Distributions of particulate backscattering bbp across the central gyre exhibited a broad particle peak centered ~100 m; – The particulate backscattering ratio typically ranged between 0.4% and 0.6% through the majority of the central gyre from the surface to ~210 m, indicative of "soft" water-filled particles with low bulk refractive index; and – bbp at 532 and 650 nm showed a distinct secondary deeper layer centered ~230 m that was absent in particulate attenuation cp data. The particulate backscattering ratio was significantly higher in this layer than in the rest of the water column, reaching 1.2% in some locations. This high relative backscattering, along with the pigment composition and ecological niche of this layer, appear to be consistent with the coccolithophorid F. profunda. Moreover, results were consistent with several expectations extrapolated from theory and previous work in oceanic and coastal regions, supporting the conclusion that particulate and total backscattering could be resolved in these extremely clear natural waters.


Sign in / Sign up

Export Citation Format

Share Document