scholarly journals 173 Lysed Corynebacterium glutamicum cell mass from lysine production as a novel feed additive to enhance gut health and growth of newly-weaned pigs

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 77-78
Author(s):  
Yi-Chi Cheng ◽  
Marcos E Duarte ◽  
Sung Woo Kim

Abstract The objective was to determine the functional and nutritional values of Corynebacterium glutamicum Cell Mass (CGCM) on growth performance and gut health of newly-weaned pigs. Forty newly-weaned pigs (21 d of age; initial BW 7.1 ± 0.4 kg) were allotted to 5 dietary treatments based on randomized complete block design with sex and BW as blocks. The lysine broth of CGCM (CJ Bio, Fort Dodge, IA) was homogenized by using French press and dried to obtain lysed CGCM. Dietary treatments were: basal diet with lysed CGCM at 0, 0.7, 1.4, 2.1%, and with 1.4% intact CGCM. Experimental diets were formulated based on nutrient requirements (NRC, 2012) and pigs were fed based on 2 phases (10 and 11 d for each phase). Titanium dioxide (0.4%) was added to phase 2 diets as an indigestible external marker to calculate nutrient digestibility. Feed intake and BW were measured at d 0, 10, and 21. Pigs were euthanized on d 21 to collect proximal and distal jejunal mucosa to measure TNF-α, IL-8, MDA, IgA, and IgG concentrations. Diets and ileal digesta were collected to measure AID. Data were analyzed by SAS using MIXED, REG, and GLM procedures. Overall, increasing daily lysed CGCM intake increased (P < 0.05) ADG (211 to 296 g) and ADFI (432 to 501 g). Increasing levels of lysed CGCM decreased (P < 0.05) MDA and changed (quadratic, P < 0.05) IgA (max: 4.90 ng/mg at 1.13%) and IgG (max: 3.37 ng/mg at 1.04%) in the proximal jejunal mucosa. Increasing daily lysed CGCM intake had quadratic effect (P< 0.05) of protein carbonyl (max: 6.3 μmol/mg at 4.9 g/d). Lysed CGCM potentially benefits growth performance and gut health of newly-weaned pigs by reducing oxidative stress and increasing immune response.

Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 504
Author(s):  
Debora Muratori Holanda ◽  
Alexandros Yiannikouris ◽  
Sung Woo Kim

Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 μg/kg supplemented in three phases; and aflatoxin: 200 μg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 μg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 μg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 383-383
Author(s):  
Jinyoung Lee ◽  
Jong Woong Kim ◽  
Heidi Hall ◽  
Martin Nyachoti

Abstract This study was conducted to investigate the effects of dietary supplementation with different organic acid (OA) mixtures on growth performance, nutrient digestibility, and gut health in weaned pigs. A total of 56 weaned pigs (7.93 ± 1.04 kg BW) were assigned to 4 dietary treatments in a randomized complete block design with 7 replicates per treatment for a 35-d study conducted over two phases; phase 1 (d 1 to 14) and phase 2 (d 14 to 35). Each pen had two pigs balanced for sex. Diets consisted of 1) a corn-soybean meal-basal without any additive (negative control, NC); 2) NC + formic and propionic acids (TRT1); 3) NC + butyric, formic, and propionic acids (TRT2); and 4) NC + antibiotic (positive control, PC). Individual pig body weight and feed disappearance were recorded weekly. At the end of each phase, blood and feces were sampled. The female pig in each pen was euthanized on d 35 to collect digesta and intestinal tissue. Data were analyzed using the PROC MIXED of SAS. During the overall period, ADG tended to be lower (P = 0.069) in the TRT2 group than in the PC group. Diet had no effect on ADFI during the overall period, but G:F of pigs fed the PC and TRT1 diets tended to be higher (P = 0.059) than that of the NC diet. No effects of OA supplementation were observed on nutrient digestibility and blood cytokine. Jejunal villus height to crypt depth ratio was higher (P &lt; 0.05) in TRT1-fed pigs than that of NC-fed pigs. Pigs fed the TRT2 diet had a higher (P &lt; 0.05) fecal abundance of Bifidobacteria than those fed the PC diet in phase 1. In conclusion, dietary OA supplementation had positive effects on growth performance and gut health but no effect on nutrient digestibility in weaned pigs.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Joowon Kang ◽  
Jong Pyo Chae ◽  
S-H Kim ◽  
J-W Kim ◽  
Sangwoo Park ◽  
...  

Abstract The study was conducted to investigate effects of dietary inactivated probiotics on growth performance, nutrient digestibility, and immune responses of weaned pigs. A total of 96 weaned pigs (initial BW = 6.95 ± 0.25 kg) were randomly assigned to 4 dietary treatments with increasing levels of inactive probiotics (4 pigs/replicate; 6 replicates/treatment; 0, 0.1, 0.2, and 0.4%; CON, T1, T2, and T3) in a randomized complete block design (BW and sex as blocks). The inactivated probiotics used in this experiment was a commercial product (CJ CheilJedang Biotechnology Research Institute, Seoul, Korea) containing 1 x 106 CFU/g on stains of Lactobacillus rhamnosus. Pigs were fed respective dietary treatments for 4 weeks. During the last week of the experimental period, pigs were fed their respective dietary treatments containing 0.2% chromic oxide. Fecal samples were collected by rectal palpation daily for the last 3 days after the 4-day adjustment period during the last week of experiment. Blood was collected from randomly selected one pig each pen on d 1, 3, 7, and 14 after weaning. Measurements were growth performance, apparent total tract digestibility (ATTD), TNF-α, TGF-β, CRP, and cortisol by ELISA. Data were analyzed using the MIXED procedure of SAS. The inactivated probiotics increased ADG (471, 501, and 513 vs. 428 g/d; P &lt; 0.05) and G:F (0.65, 0.69, and 0.71 vs. 0.58 g/g; P &lt; 0.05) during overall experimental period compared with CON. The inactivated probiotics increased ATTD of GE (86.87, 87.29, and 88.53 vs. 85.25%; P &lt; 0.05) compared with CON. The inactivated probiotics decreased TNF-α (600, 542, and 523 vs. 849 pg/ml; P &lt; 0.05) and cortisol (5.58, 5.56, and 5.44 vs. 7.25 ng/ml; P &lt; 0.05) on d 7 compared with CON. In conclusion, addition of inactivated probiotics improved growth performance, and nutrient digestibility, and modified immune responses.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 352-353
Author(s):  
Soyun Kim ◽  
Jeongjae Lee ◽  
Sheena Kim ◽  
Byeonghyeon Kim ◽  
Joowon Kang ◽  
...  

Abstract Two experiments were conducted to investigate effects of dietary flavor as a feed additive on growth performance of weaned pigs. The flavor used in experiments was a commercial product (Luctarom®, Lucta Guangzhou, China) containing milky cream flavor. In Exp. 1, 72 weaned pigs (initial BW = 6.51 ± 0.21 kg) were randomly assigned to 2 dietary treatments (4 pigs/pen; 9 replicates/treatment): an experimental diet based on corn and soybean meal (CON1) and CON1 supplemented with 0.05% flavor (FLA). In Exp. 2, 72 weaned pigs (initial BW = 6.66 ± 0.32 kg) were randomly assigned to 2 dietary treatments (4 pigs/pen; 9 replicates/treatment): a commercial diet based on corn and soybean meal with spray dried plasma, fish meal, and zinc oxide (CON2) and CON2 supplemented with FLA. Pigs were fed respective dietary treatment for 6 weeks. Growth performance was measured on day 1, 7, 14, 21, and 42 after weaning. Data were analyzed using the PROC GLM procedure of SAS. The statistical model for every measurement included dietary effect and BW as a covariate in a randomized complete block design (block = BW). In Exp. 1, pigs fed FLA tended to increase ADG (0.493 vs. 0.451 kg/d; P &lt; 0.10) during the experimental period compared with those fed CON1. However, there were no differences in ADFI and G:F between CON1 and FLA. In Exp. 2, pigs fed FLA had greater ADG (0.548 vs. 0.463 kg/d; P &lt; 0.05) and tended to increase ADFI (0.870 vs. 0.753 kg/d; P &lt; 0.10) during the experimental period than those fed CON2. However, there was no difference in G:F between CON2 and FLA. In conclusion, the addition of dietary flavor in experimental and commercial nursery diets improved growth performance of weaned pigs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 77-77
Author(s):  
Yi-Chi Cheng ◽  
Marcos E Duarte ◽  
Sung Woo Kim

Abstract The objective was to test the efficacy of L-Thr or L-Val with biomass (ThrPro or ValPro; CJ BIO, Fort Dodge, IA) on growth performance and health compared with L-Thr or L-Val (purified) in newly-weaned pigs. There were 9 dietary treatments based on NRC (2012) requirements: NC (basal diet meeting 70% of requirements for SID Thr and Val); 4 treatments based on basal diet meeting 95% of requirements: LT (with L-Thr), LV (with L-Val), PT (with ThrPro), and PV (with ValPro); HLT (fivefold L-Thr in LT), HLV (fivefold L-Val in LV), HPT (fivefold ThrPro in PT), and HPV (fivefold ValPro in PV). Pigs were fed for 26 d in 2 phases. Feed intake and BW were measured at d 0, 5, 10, 17, and 26. Blood was collected on d 21 for liver function analysis. Pigs were euthanized on d 26 to collect jejunal mucosa for gut health parameters. Data were analyzed by SAS using MIXED procedure. Pigs fed LT and LV or PT and PV had higher (P &lt; 0.05) ADG than pigs fed NC during phase 2. Pigs fed LT, LV, PT, and PV had higher ADFI and G:F than pigs fed NC during d 17 to 26. Pigs fed PT and PV had lower (P &lt; 0.05) G:F than pigs fed HPT and HPV during phase 2. Pigs fed LT and LV or PT and PV had lower (P &lt; 0.05) BUN than pigs fed NC. Overall, pigs fed PT and PV had no differences in any analyzed measurements from pigs fed LT and LV and pigs fed HPT and HPV. In conclusion, PT and PV were equally efficient to LT and LV for growth performance and health. HPT and HPV did not impair liver and gut health compared with PT and PV.


2021 ◽  
Vol 12 (7) ◽  
pp. 2962-2971
Author(s):  
Yuheng Luo ◽  
Jun He ◽  
Hua Li ◽  
Cong Lan ◽  
Jingyi Cai ◽  
...  

This study was conducted to compare the effect of raw (WB) or mixed fungi-fermented wheat bran (FWB) on the growth, nutrient digestibility and intestinal health in weaned piglets.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 375
Author(s):  
Sheena Kim ◽  
Jin Ho Cho ◽  
Younghoon Kim ◽  
Hyeun Bum Kim ◽  
Minho Song

The present study was conducted to evaluate the effects of replacing corn with brown rice on growth performance, nutrient digestibility, carcass characteristics, and gut microbiota of growing and finishing pigs. A total of 100 growing pigs (23.80 ± 2.96 kg BW; 10 weeks of age) were randomly allotted to 4 dietary treatments (5 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW) as follows: corn-soybean meal basal diet (CON) and replacing corn with 50% (GBR50), 75% (GBR75), and 100% (GBR100) of ground brown rice. Each trial phase was for 6 weeks. During the growing period, there were no differences on growth performance and nutrient digestibility among dietary treatments. Similarly, no differences were found on growth performance, nutrient digestibility, and carcass characteristics of pigs during the finishing period among dietary treatments. As a result of the beta diversity analysis, microbial populations were not clustered between CON and GBR100 during the growing phase, but clustered into two distinct groups of CON and GBR100 during the finishing phase. In conclusion, brown rice can be added to the diets of growing-finishing pigs by replacing corn up to 100% without negatively affecting growth performance of the pigs; additionally, this may have an effect on changes in pig intestinal microbiota if continued for a long time.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 220-222
Author(s):  
Seung Min Oh ◽  
SeYoung Yoon ◽  
KwangYeol Kim ◽  
Jung Woo Choi ◽  
Abdolreza Hosseindoust ◽  
...  

Abstract The aim of this trial was to determine the optimal supplementation mealworm on growth performance, apparent total tract retention of nutrients, hematological traits, immune response, and intestinal morphology in weaned pigs. A total of 180 weaned pigs (Landrace×Yorkshire×Duroc; 6.27 ± 0.15 kg) were randomly allotted to 3 treatments and 6 replicates on the basis of initial body weight and sex. The dietary treatments included a corn-based diet supplemented with 0, 2.5, or 5 % mealworm in 2 phases (0–14 and 15–28 d). The gain to feed ratio (G:F) was higher in pigs fed 2.5% mealworm compared with 2.5% during the first phase. Overall ADG was improved in pigs fed 2.5% mealworm compared with pigs fed 5% mealworm. No improvement in overall ADFI and G:F were observed. No digestibility responses were observed by adding mealworm to the diet, but the digestibility of DM and GE were tended to be higher in pigs fed 2.5% mealworm compared with control in phase 1. The number of monocytes tended to be increased in pigs fed 5% mealworm. The concentration of plasma IgG was higher in pigs fed mealworm, however, the plasma IL-6 was tended to be decreased when mealworm was added to the diet (P = 0.052). There was no change in intestinal morphology with increasing dietary levels of mealworm. The results showed that the dietary supplementation of 2.5% mealworm had beneficial effects on growth performance and immune system, however, no effects were detected on growth performance when 5% mealworm was added to the diet.


Author(s):  
Danung Nur Adli ◽  
Osfar Sjofjan

The aim of this study was to assess the effects of dietary probiotic enhanced liquid acidifier combined with mannan-rich fraction on growth performance, nutrients digestibility in growing pigs. Thirty [(Duroc×Yorkshire)×Landrace] pigs with the average initial BW of 36.75±1.57 kg were allocated into three treatments by a randomized complete block design. There were five pens per treatment with six pigs per pen. Dietary treatments include: 1) CON (basal diet); 2) T1 (basal diet+probiotic 0.1%) and 3) T2 (basal diet+probiotic+mannan rich fraction 0.2%). the data were analyzed as a randomized complete block design using of SAS University Version 4.0. The model included the effects of block (replication) and treatment. Pen served as the experimental unit. During the entire experimental period of 6 weeks, results showed that addition of complex probiotic at the level of 0.2% to diet increased ADG significantly (p<0.05). Also, digestibility of DM and N tended to increase. To sum up, results in this experiment indicated that dietary [(probiotik×acidifier)×mannan-rich-fraction]  supplementation had a positive effect on growing pigs performance and nutrient digestibility


Sign in / Sign up

Export Citation Format

Share Document