256 Effects of Transition Period Nutrition on Uterine Health

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 136-137
Author(s):  
Felipe Cardoso

Abstract The transition from gestation to lactation, also known as the transition period, is a critical time for dairy cows. This phase is typically defined as 3 wk before parturition through 3 wk after parturition. Peak disease incidence (shortly after parturition) corresponds with the time of greatest negative energy balance (NEB), the peak in blood concentrations of nonesterified fatty acids, and the greatest acceleration of milk yield. Decreased fertility in the face of increasing milk production may be attributable to greater severity of postpartal NEB resulting from inadequate transition management or increased rates of disease. The depth and duration of NEB is highly related to dry matter intake. Formulation and delivery of appropriate diets that limit total energy intake to requirements but also provide proper intakes of all other nutrients (including the most limiting amino acids Met and Lys) before calving can help lessen the extent of NEB after calving. Cows that received controlled-energy diets during the last 3 wk prepartum had shorter days to pregnancy than cows that consumed high-energy diets in this time period. Additionally, a fully acidified prepartum diet formulated with a higher Ca concentration improved reproductive performance and uterine immune function in the postpartum period through the decrease of days to first ovulation, a tendency to decrease service per conception rate, improved glandular morphology, a tendency to increase polymorphonuclear neutrophil infiltration, and a tendency to increase the tight-junction protein occludin. Supplementation of rumen-protected methionine during the transition period resulted in improved uterine immune function through improved glandular morphology, increased neutrophil infiltration number after calving, and discovery of neutrophil extracellular trap formation in bovine endometrial tissue. In conclusion, nutritional strategies during the transition impact uterine health and fertility in dairy cows.

2014 ◽  
Vol 46 (9) ◽  
pp. 328-337 ◽  
Author(s):  
S. Selim ◽  
S. Salin ◽  
J. Taponen ◽  
A. Vanhatalo ◽  
T. Kokkonen ◽  
...  

Overfeeding during the dry period may predispose cows to increased insulin resistance (IR) with enhanced postpartum lipolysis. We studied gene expression in the liver and subcutaneous adipose tissue (SAT) of 16 Finnish Ayrshire dairy cows fed either a controlled energy diet [Con, 99 MJ/day metabolizable energy (ME)] during the last 6 wk of the dry period or high-energy diet (High, 141 MJ/day ME) for the first 3 wk and then gradually decreasing energy allowance during 3 wk to 99 MJ/day ME before the expected parturition. Tissue biopsies were collected at −10, 1, and 9 days, and blood samples at −10, 1, and 7 days relative to parturition. Overfed cows had greater dry matter, crude protein, and ME intakes and ME balance before parturition. Daily milk yield, live weight, and body condition score were not different between treatments. The High cows tended to have greater plasma insulin and lower glucagon/insulin ratio compared with Con cows. No differences in circulating glucose, glucagon, nonesterified fatty acids and β-hydroxybutyrate concentrations, and hepatic triglyceride contents were observed between treatments. Overfeeding compared with Con resulted in lower CPT1A and PCK1 and a tendency for lower G6PC and PC expression in the liver. The High group tended to have lower RETN expression in SAT than Con. No other effects of overfeeding on the expression of genes related to IR in SAT were observed. In conclusion, overfeeding energy prepartum may have compromised hepatic gluconeogenic capacity and slightly affected IR in SAT based on gene expression.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 619
Author(s):  
Matteo Mezzetti ◽  
Andrea Minuti ◽  
Fiorenzo Piccioli-Cappelli ◽  
Gianfranco Gabai ◽  
Erminio Trevisi

Omnigen-AF (OAF) increases leukocyte functions in immunosuppressed animal models and reduces incidence of infectious diseases in early lactating dairy cows, although its mode of action is still unclear. This study aims to provide a wider perspective of the metabolic effect of OAF to test its potential as a strategy to address metabolic disorders of the transition period. A group of 10 Holstein dairy cows were divided into 2 groups: The treated group (IMS; 5 cows) received 32.5 g of OAF twice a day (65 g d−1) as top-dress in the morning and afternoon feeds from −55 to 42 days from calving (DFC), whereas the control group (CTR; 5 cows) received no supplementation. From −62 to 42 DFC, body condition score, body weight, dry matter intake, rumination time and milk yield were measured; blood samples were collected weekly to assess a wide hematochemical profile and to test white blood cell functions by ex-vivo challenge assays. At 30 DFC, rumen fluid was collected and analyzed for pH, volatile fatty acids composition, urea nitrogen, and lactate contents. Data were submitted to ANOVA using a mixed model for repeated measures, including treatment, time, and their interaction as fixed effects. OAF decreased blood nonesterified fatty acids and beta hydroxybutyrate concentrations and increased rumination time in early lactation. Leukocytes from IMS cows had lower lactate production and lower glucose consumption after ex-vivo stimulation. OAF did not reduce the acute phase response indicators and reduced the blood concentrations of albumin and antioxidants after calving, suggesting impairment of hepatic functions related to protein synthesis and antioxidant management. Nevertheless, the lack of effect on bilirubin and liver enzymes refutes the possibility of severe liver damage occurring with OAF supplementation. Positive effects in reducing mobilization of body fats and ketogenesis and in increasing rumination time after calving suggest OAF effectiveness in preventing metabolic disorders of the transition period.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1478
Author(s):  
Tainara Cristina Michelotti ◽  
Erminio Trevisi ◽  
Johan S. Osorio

The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guanxin Lv ◽  
Hai Wang ◽  
Jianfa Wang ◽  
Shuai Lian ◽  
Rui Wu

Enzootic bovine leukemia is a late-onset, neoplastic infection caused by the bovine leukemia virus (BLV). BLV infection hinders the function of the immune system and induces other diseases, which negatively affects the performance and health of the infected cows. As the first line of defense against invading foreign pathogenic microorganisms, polymorphonuclear neutrophil (PMN) plays a vital role in the immune system of dairy cows. However, research on the effect of BLV infection on the immune function of PMN in dairy cows is scarce. Therefore, this experiment aimed to elucidate the effects and effect mechanisms of BLV infection on the immune function of PMN in dairy cows with different BLV provirus loads by detecting the chemotaxis, migration, adhesion, phagocytosis, respiratory burst function, and the formation of NETs. The experimental results showed that BLV infection had no significant effect on the phagocytosis of PMN but inhibited their migration and respiratory burst function, and the effects were closely related to the BLV provirus load. Under high BLV provirus load, PMN produced large amounts of NETs, chemokine CXCL7, adhesion molecule CD18, and pro-inflammatory factors IL-8 and TNF-α, triggering inflammatory responses, and tissue damage. The results of this study will help reveal the reason why BLV infection causes the high incidence of mammary gland inflammation in dairy cows.


2007 ◽  
Vol 32 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Juan J. Loor ◽  
Robin E. Everts ◽  
Massimo Bionaz ◽  
Heather M. Dann ◽  
Dawn E. Morin ◽  
...  

Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction ( n = 7) or control ( n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10–14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 513-514
Author(s):  
A. Minuti ◽  
N. Jahan ◽  
F. Piccioli-Capelli ◽  
L. Bomba ◽  
S. Capomaccio ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 21 ◽  
Author(s):  
Gianfranco Gabai ◽  
Elisabetta De Luca ◽  
Giovanni Miotto ◽  
Gianni Zin ◽  
Annalisa Stefani ◽  
...  

High neutrophil (PMN, Polymorphonuclear neutrophil) counts in the endometrium of cows affected by endometritis, suggests the involvement of oxidative stress (OS) among the causes of impaired fertility. Protein oxidation, in particular, advanced oxidation protein products (AOPP), are OS biomarkers linked to PMN activity. To test this hypothesis, the relationship between protein oxidation and uterus health was studied in thirty-eight dairy cows during the puerperium. The animals were found to be cycling, without any signs of disease and pharmacological treatments. PMN count was performed either through a cytobrush or a uterine horn lavage (UHL). Cows were classified into four groups, based on the uterine ultrasonographic characteristics and the PMN percentage in the uterine horns with a higher percentage of high neutrophil horn (HNH). They were classified as: Healthy (H); Subclinical Endometritis (SCE); Grade 1 Endometritis (EM1); and Grade 2 Endometritis (EM2). AOPP and carbonyls were measured in plasma and UHL. UHL samples underwent Western blot analysis to visualize the carbonyl and dityrosine formation. Plasma AOPP were higher (p < 0.05) in EM2. AOPP and carbonyl group concentrations were higher in the HNH samples (p < 0.05). Protein concentration in the UHL was higher in the EM2 (p < 0.05). Carbonyl and dityrosine formation was more intense in EM1 and EM2. Protein oxidation observed in the EM2 suggests the presence of an inflammatory status in the uterus which, if not adequately hindered, could result in low fertility.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Giulia Esposito ◽  
Emiliano Raffrenato ◽  
Somwe D Lukamba ◽  
Mounir Adnane ◽  
Pete C Irons ◽  
...  

Abstract Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P &lt; 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P &lt; 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P &lt; 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P &lt; 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.


Sign in / Sign up

Export Citation Format

Share Document