325 The Diagnosis of Sub-acute Ruminal Acidosis (SARA) in Dairy Cows on Commercial Farms Using the Milk Fatty Acid Profile

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 174-175
Author(s):  
Jan C Plaizier ◽  
Sharon Y Mowete ◽  
Debora Santchi ◽  
Ken Kwiatkowski ◽  
Nympha De Neve ◽  
...  

Abstract The accuracy of the milk fatty acid profile as a diagnostic tool for the diagnosis of sub-acute ruminal acidosis (SARA) has been determined when SARA was experimentally induced. This had not yet been done not on commercial dairy farms, where SARA can occur naturally. The objective of this study was to determine this accuracy in individual cows on commercial dairy farms. A total of 336 cows from 24 commercial dairy farms in Quebec were included. Farms were blocked based on geographical location and management, with each block having one high risk SARA farm and one low risk SARA farm. Farm Risk of SARA was determined based on the milk fat content and the proportions of de novo fatty acids and long chain unsaturated fatty acids in the bulk tank. On each farm, 7 early/mid-lactation (< 150 days in milk DIM) and 7 mid/late lactation (< 150 DIM) cows were randomly selected. The fatty acid profile of pooled milk samples from these cows were determined by gas chromatography. Farm risk of SARA did not affect the milk fat proportion of fatty acids, with the exception of trans 10 cis 12 C18:2, which was higher in At Risk Farms. Later lactation cows had a higher milk fat content and higher milk fat proportions of de novo, C16 fatty, and odd and branch chain fatty acids. The prevalence of SARA was likely higher in earlier lactation cows than in later lactation cows, but non-SARA related animal and dietary factors also affect the milk fatty acid profile. Hence, the milk fatty acid profile alone may not be accurate enough to diagnose SARA on farm. This profile can, however, contribute to this diagnosis, the identification of causes of milk fat depression, and the development of strategies to optimize the milk fatty acid profile.

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 912 ◽  
Author(s):  
Robert Bodkowski ◽  
Katarzyna Czyż ◽  
Anna Wyrostek ◽  
Paulina Cholewińska ◽  
Ewa Sokoła-Wysoczańska ◽  
...  

The aim of the study was to examine the effect of dietary supplementation of isomerized poppy seed oil (IPO) enriched with conjugated dienes of linoleic acid (CLA) on cow and sheep milk parameters (fat content, fatty acid profile, Δ9-desaturase index, and atherogenic index). The process of poppy seed oil alkaline isomerization caused the formation of CLA isomers with cis-9,trans-11, trans-10,cis-12, and cis-11,trans-13 configurations in the amounts of 31.2%, 27.6%, and 4.1% of total fatty acids (FAs), respectively. Animal experiments were conducted on 16 Polish Holstein Friesian cows (control (CTRL) and experimental (EXP), n = 8/group) and 20 East Friesian Sheep (CTRL and EXP, n = 10/group). For four weeks, animals from EXP groups received the addition of IPO in the amount of 1% of dry matter. Milk was collected three times: on days 7, 14, and 30. Diet supplementation with IPO decrease milk fat content (p < 0.01). Milk fat from EXP groups had higher levels of polyunsaturated fatty acids, including FAs with beneficial biological properties, that is, CLA and TVA (p < 0.01), and lower levels of saturated fatty acids, particularly short- (p < 0.01) and medium-chain FAs (p < 0.05). The addition of IPO led to a decrease in the atherogenic index.


2013 ◽  
Vol 14 (2) ◽  
pp. 322-335
Author(s):  
Jose Esler de Freitas Júnior ◽  
Francisco Palma Rennó ◽  
Jefferson Rodrigues Gandra ◽  
Luciana Navajás Rennó ◽  
Gustavo Henrique Rodrigues ◽  
...  

The objective was to evaluate the effect of unsaturated fatty acid sources supplementation on nutrients balances and milk fatty acid profile of mid lactation dairy cows. Twelve Brazilian Holstein cows in the mid lactation (mean of 128 days) and (580 ± 20kg of weight; mean ± SD) with milk yield of 25kg/d were assigned randomly into three 4 x 4 Latin square, fed the following diets: control (C); refined soybean oil; (SO); whole soybean raw (WS) and; calcium salts of unsaturated fatty acids (CSFA). Milk yield was 26.6; 26.4; 24.1 and 25.7 to the diets CO, SO, WS and CSFA respectively. Cows fed the WS treatment produced less milk (1.95kg/d of milk), fat and lactose than did cows fed the SO and CSFA. Cows fed the CSFA treatment showed less blood, urine (g/d) concentrations of N more energetic efficiency and intake of energy than did cows fed the SO treatment. Cows fed the unsaturated fatty acids sources showed more C18:2 cis-9, trans-11 CLA and trans-C18:1 FA concentration in milk than did cows fed the CO treatment. Diets with whole soybeans and soybeans oil provide more efficient digestive processes, and increase milk composition of unsaturated fatty acids.


2014 ◽  
Vol 81 (2) ◽  
pp. 183-192 ◽  
Author(s):  
Aprianita Aprianita ◽  
Osaana N Donkor ◽  
Peter J Moate ◽  
S Richard O Williams ◽  
Martin J Auldist ◽  
...  

This experiment was conducted to determine the effects of diets supplemented with cottonseed oil,Acacia mearnsii-condensed tannin extract, and a combination of both on composition of bovine milk. Treatment diets included addition of cottonseed oil (800 g/d; CSO), condensed tannin fromAcacia mearnsii(400 g/d; TAN) or a combination of cottonseed oil (800 g/d) and condensed tannin (400 g/d; CPT) with a diet consisting of 6·0 kg dry matter (DM) of concentrates and alfalfa hay ad libitum, which also served as the control diet (CON). Relative to the CON diet, feeding CSO and CPT diets had a minor impact on feed intake and yield of lactose in milk. These diets increased yields of milk and protein in milk. In contrast to the TAN diet, the CSO and CPT diets significantly decreased milk fat concentration and altered milk fatty acid composition by decreasing the proportion of saturated fatty acids but increasing proportions of monounsaturated and polyunsaturated fatty acids. The CPT diet had a similar effect to the CSO diet in modifying fatty acid profile. Overall, reduction in milk fat concentration and changes in milk fatty acid profile were probably due to supplementation of linoleic acid-rich cottonseed oil. The TAN diet had no effect on feed intake, milk yield and milk protein concentration. However, a reduction in the yields of protein and lactose occurred when cows were fed this diet. Supplemented tannin had no significant effect on fat concentration and changes in fatty acid profile in milk. All supplemented diets did not affect protein concentration or composition, nitrogen concentration, or casein to total protein ratio of the resulting milk.


2005 ◽  
Vol 143 (5) ◽  
pp. 359-367 ◽  
Author(s):  
R. J. DEWHURST

Demand for milk has waxed and waned over the last 100 years in response to changing perceptions of its health effects. Milk consumption was promoted for health benefits in the first half of the twentieth century, whilst milk fat has increasingly been regarded as something to avoid over the last 30 years. Emerging research is showing that milk fat provides a number of important components, almost uniquely, within a balanced human diet. Understanding of the role of animal diets in controlling milk fat content and milk fatty acid profiles has grown over this period. The multiple correlated changes associated with milk fat depression have led to a number of mechanistic theories which have not been resolved completely. The detailed mechanisms at the molecular level remain to be elucidated. Interestingly, the two research areas of milk fat content and milk fatty acid profiles have merged as it became clear that some of the intermediates of rumen biohydrogenation are involved in regulating milk fat content. The multivariate nature of milk fatty acid profiles means that future studies must make use of multivariate statistical techniques. These approaches will also be of great value in assessing the consequences of fatty acids for human health, where studies of the effects of single nutrients can be misleading. Issues about the sustainability of the marine harvests mean that attention needs to focus on alternative sources to meet the growing demand for n-3 fatty acids, notably from forages. Whilst attention has focused on milk fatty acids for their effects on human health, future work should also address effects on health and reproductive function of cows offered diets designed to alter milk fatty acid profiles.


Author(s):  
Anamaria COZMA ◽  
Bruno MARTIN ◽  
Marlène GUIADEUR ◽  
Philippe PRADEL ◽  
Sanda ANDREI ◽  
...  

The present study was conducted in order to evaluate the effects of calf presence during milking and cow breed on milk fatty acid (FA) profile. 30 Prim’Holstein (H) and Salers (S) primiparous lactating cows were milked in the presence (CP) or in the absence (CA) of their calves, during the 9 months of lactation. Milk FA profile was significantly influenced by breed: 4:0, 12:0, 18:2 n-6 and cis-18:1 had higher concentrations in milk from H cows, whereas 14:0, 18:3 n-3, cis-9,trans-11-CLA and trans-18:1 had higher concentrations in milk from S cows. The presence of the calf during milking also had an important effect: it decreased the milk fat content, as well as 18:0, 18:2 n-6, 18:3 n-3 and trans-18:1 levels and it increased 16:0 level. Cis-9,trans-11-CLA concentration increased in the presence of the calf, for H cows, whereas it decreased for S cows.


2015 ◽  
Vol 67 (3) ◽  
pp. 927-934 ◽  
Author(s):  
G.A. Gagliostro ◽  
E.M. Patiño ◽  
M. Sanchez Negrette ◽  
G. Sager ◽  
L. Castelli ◽  
...  

The aim of the study was to examine the changes in milk fatty acid (FA) profile of grazing buffaloes fed either low (L, 276g/d) or high (H, 572g/d) doses of a blend (70:30, wt/wt) of soybean and linseed oils. Fourteen multiparous Mediterranean buffaloes grazing on a native pasture were fed 4 kg/day of a commercial concentrate containing no supplemental oil over a pre-experimental period of ten days. The baseline milk production and composition and milk FA profile were measured over the last three days. After this pre-experimental period the animals received the same concentrate added with either the L or H oil doses for 26 additional days. Milk yield (g/animal/day) did not differ at the start (1776 ± 522 and 1662 ± 291 for L and H, respectively, P<0.622) or at the end of the trial (4590 ± 991 and 4847 ± 447 in L and H, respectively, P<0.543). Baseline milk fat content (g/kg) averaged 77.1 (±20.5) in L and 74.3 (±9.9) in H (P<0.10) and was reduced (P<0.031) to 60.7 (±23.6) and 49.4 (±11.2) (P<0.0031) respectively after L and H with no differences between treatments (P<0.277). Baseline milk protein content (L=43.2 ± 3.4 and H= 44.3 ± 6.9g/kg) increased after oil supplementation (P<0.0001) in both L (73.2 ± 6.0g/kg) and H (68.4 ± 4.9g/kg) without differences between oil doses (P<0.123). Milk fat content of 14:0 decreased after oil supplementation only in the H treatment (5.29 to 4.03, P<0.007) whereas that of 16:0 was reduced (P<0.001) at both L (24.49 to 19.75g/100g FA) and H (25.92 to 19.17g/100g FA) doses. The reduction of total content of 12:0 to 16:0 was higher (P<0.052) in H (32.02 to 23.93g/100g FA) than L (30.17 to 25.45g/100g FA). Vaccenic acid content increased (P<0.001) from 5.70 to 13.24g/100g FA in L and from 5.25 to 16.77 in H, with higher results in the in H treatment (P<0.001). Baseline rumenic acid was sharply increased (P<0.001) in L (1.80 to 4.09g/100g FA, +127%) and H (1.60 to 4.61g/100g FA, +187%) with no differences between L and H (P<0.19). Overall, these results indicate a pronounced improvement in the nutritional value of milk fat from grazing buffaloes fed little amounts (0.276g/day) of a blend of soybean and linseed oils.


Author(s):  
Klára Novotná ◽  
Milena Fantová ◽  
Lenka Nohejlová ◽  
Markéta Borková ◽  
Luděk Stádník ◽  
...  

The aim of this study was to investigate the effect of two species of the microalgae on the milk yield, the basic composition and the fatty acid profile of goat milk, with focus on n‑3 fatty acids. Forty‑five White short‑haired goats were randomly allocated to three groups; the control group (C) with no supplementation microalgae to the diet. The first experimental group (Ch) was supplemented with Chlorella vulgaris and second experimental group (J) has been supplemented with Japonochytrium sp. The Japonochytrium supplementation negatively affected milk yield, but the amount of milk fat (+0.1 %; +0.45 %) and solids‑not‑fat (+0.27 %; +0.86 %) were higher than in group C and Ch. The amount of polyunsaturated (5.527 % ± 0.378) and saturated (71.560 % ± 0.861) fatty acids was also highest in group J. An increase of C20:4, C20:5 was detected in J and Ch, and the concentration of C22:6 was highest in group J (+0.019 %; P < 0.001).


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


Sign in / Sign up

Export Citation Format

Share Document