Targets for milk fat research: nutrient, nuisance or nutraceutical?

2005 ◽  
Vol 143 (5) ◽  
pp. 359-367 ◽  
Author(s):  
R. J. DEWHURST

Demand for milk has waxed and waned over the last 100 years in response to changing perceptions of its health effects. Milk consumption was promoted for health benefits in the first half of the twentieth century, whilst milk fat has increasingly been regarded as something to avoid over the last 30 years. Emerging research is showing that milk fat provides a number of important components, almost uniquely, within a balanced human diet. Understanding of the role of animal diets in controlling milk fat content and milk fatty acid profiles has grown over this period. The multiple correlated changes associated with milk fat depression have led to a number of mechanistic theories which have not been resolved completely. The detailed mechanisms at the molecular level remain to be elucidated. Interestingly, the two research areas of milk fat content and milk fatty acid profiles have merged as it became clear that some of the intermediates of rumen biohydrogenation are involved in regulating milk fat content. The multivariate nature of milk fatty acid profiles means that future studies must make use of multivariate statistical techniques. These approaches will also be of great value in assessing the consequences of fatty acids for human health, where studies of the effects of single nutrients can be misleading. Issues about the sustainability of the marine harvests mean that attention needs to focus on alternative sources to meet the growing demand for n-3 fatty acids, notably from forages. Whilst attention has focused on milk fatty acids for their effects on human health, future work should also address effects on health and reproductive function of cows offered diets designed to alter milk fatty acid profiles.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 174-175
Author(s):  
Jan C Plaizier ◽  
Sharon Y Mowete ◽  
Debora Santchi ◽  
Ken Kwiatkowski ◽  
Nympha De Neve ◽  
...  

Abstract The accuracy of the milk fatty acid profile as a diagnostic tool for the diagnosis of sub-acute ruminal acidosis (SARA) has been determined when SARA was experimentally induced. This had not yet been done not on commercial dairy farms, where SARA can occur naturally. The objective of this study was to determine this accuracy in individual cows on commercial dairy farms. A total of 336 cows from 24 commercial dairy farms in Quebec were included. Farms were blocked based on geographical location and management, with each block having one high risk SARA farm and one low risk SARA farm. Farm Risk of SARA was determined based on the milk fat content and the proportions of de novo fatty acids and long chain unsaturated fatty acids in the bulk tank. On each farm, 7 early/mid-lactation (< 150 days in milk DIM) and 7 mid/late lactation (< 150 DIM) cows were randomly selected. The fatty acid profile of pooled milk samples from these cows were determined by gas chromatography. Farm risk of SARA did not affect the milk fat proportion of fatty acids, with the exception of trans 10 cis 12 C18:2, which was higher in At Risk Farms. Later lactation cows had a higher milk fat content and higher milk fat proportions of de novo, C16 fatty, and odd and branch chain fatty acids. The prevalence of SARA was likely higher in earlier lactation cows than in later lactation cows, but non-SARA related animal and dietary factors also affect the milk fatty acid profile. Hence, the milk fatty acid profile alone may not be accurate enough to diagnose SARA on farm. This profile can, however, contribute to this diagnosis, the identification of causes of milk fat depression, and the development of strategies to optimize the milk fatty acid profile.


2003 ◽  
Vol 90 (5) ◽  
pp. 979-986 ◽  
Author(s):  
Leon R. Mitoulas ◽  
Lyle C. Gurrin ◽  
Dorota A. Doherty ◽  
Jillian L. Sherriff ◽  
Peter E. Hartmann

Despite the importance of human milk fatty acids for infant growth and development, there are few reports describing infant intakes of individual fatty acids. We have measured volume, fat content and fatty acid composition of milk from each breast at each feed over a 24h period to determine the mean daily amounts of each fatty acid delivered to the infant from breast milk at 1, 2, 4, 6, 9 and 12 months of lactation in five women. Daily (24h) milk production was 336·60 (sem 26·21) and 414·49 (sem 28·39) ml and milk fat content was 36·06 (sem 1·37) and 34·97 (sem 1·50) g/l for left and right breasts respectively over the course of the first year of lactation. Fatty acid composition varied over the course of the day (mean CV 14·3 (sd 7·7) %), but did not follow a circadian rhythm. The proportions (g/100g total fatty acids) of fatty acids differed significantly between mothers (P<0·05) and over the first year of lactation (P<0·05). However, amounts (g) of most fatty acids delivered to the infant over 24h did not differ during the first year of lactation and only the amounts of 18:3n-3, 22:5n-3 and 22:6n-3 delivered differed between mothers (P<0·05). Mean amounts of 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 delivered to the infant per 24h over the first year of lactation were 2·380 (sd 0·980), 0·194 (sd 0·074), 0·093 (sd 0·031) and 0·049 (sd 0·021) g respectively. These results suggest that variation in proportions of fatty acids may not translate to variation in the amount delivered and that milk production and fat content need to be considered.


2017 ◽  
Vol 57 (11) ◽  
pp. 2224 ◽  
Author(s):  
J. R. R. Dorea ◽  
L. E. Armentano

The objective of the present article was to summarise the effects of five common dietary fatty acids (C16:0, C18:0, C18:1, C18:2 and C18:3) on the major milk fat groups (<C16, C16 and C18). Forty published papers were reviewed to evaluate the effect of adding free fat or oil supplements rich in C16 and C18 fatty acids on the response of milk fat secretion and composition. From those 40 studies, 21 were used to investigate the effect of total dietary concentration of C16:0, C18:0, C18:1, C18:2 and C18:3 on milk secretion or concentrations of milk <C16, C16 and C18 fatty acid groups. The results indicated that C16 supplementation increased total milk fatty acids, mainly by increasing milk C16 yield, without affecting milk <C16 and C18 yield. Supplements rich in unsaturated fatty acid decreased total milk fatty acid by inhibiting secretion of milk fatty acids shorter than C18, with linoleic acid being the most inhibitory. Mixtures of feed fatty acid (C16:0 + C18:0 and C16:0 + C18:1) did not significantly affect total milk fatty acid yield. According to regression of milk C16 yield on dietary fatty acid, endogenous C16 contributes ~80% of total milk C16, but this proportion varies with the level and type of dietary fatty acid fed. Milk mid-infrared analysis can be used to routinely measure the presence of milk <C16 fatty acid, the concentration of which provides a good indicator of inhibition of milk fatty acid secretion. In contrast, measurement of total milk fat content is less effective as a diagnostic tool due to the masking effect of the exogenous supply of C16 and C18 dietary fatty acids.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1111
Author(s):  
Maria P. Mollica ◽  
Giovanna Trinchese ◽  
Fabiano Cimmino ◽  
Eduardo Penna ◽  
Gina Cavaliere ◽  
...  

Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding—the main way to modify milk fat composition—may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.


2015 ◽  
Vol 67 (3) ◽  
pp. 927-934 ◽  
Author(s):  
G.A. Gagliostro ◽  
E.M. Patiño ◽  
M. Sanchez Negrette ◽  
G. Sager ◽  
L. Castelli ◽  
...  

The aim of the study was to examine the changes in milk fatty acid (FA) profile of grazing buffaloes fed either low (L, 276g/d) or high (H, 572g/d) doses of a blend (70:30, wt/wt) of soybean and linseed oils. Fourteen multiparous Mediterranean buffaloes grazing on a native pasture were fed 4 kg/day of a commercial concentrate containing no supplemental oil over a pre-experimental period of ten days. The baseline milk production and composition and milk FA profile were measured over the last three days. After this pre-experimental period the animals received the same concentrate added with either the L or H oil doses for 26 additional days. Milk yield (g/animal/day) did not differ at the start (1776 ± 522 and 1662 ± 291 for L and H, respectively, P<0.622) or at the end of the trial (4590 ± 991 and 4847 ± 447 in L and H, respectively, P<0.543). Baseline milk fat content (g/kg) averaged 77.1 (±20.5) in L and 74.3 (±9.9) in H (P<0.10) and was reduced (P<0.031) to 60.7 (±23.6) and 49.4 (±11.2) (P<0.0031) respectively after L and H with no differences between treatments (P<0.277). Baseline milk protein content (L=43.2 ± 3.4 and H= 44.3 ± 6.9g/kg) increased after oil supplementation (P<0.0001) in both L (73.2 ± 6.0g/kg) and H (68.4 ± 4.9g/kg) without differences between oil doses (P<0.123). Milk fat content of 14:0 decreased after oil supplementation only in the H treatment (5.29 to 4.03, P<0.007) whereas that of 16:0 was reduced (P<0.001) at both L (24.49 to 19.75g/100g FA) and H (25.92 to 19.17g/100g FA) doses. The reduction of total content of 12:0 to 16:0 was higher (P<0.052) in H (32.02 to 23.93g/100g FA) than L (30.17 to 25.45g/100g FA). Vaccenic acid content increased (P<0.001) from 5.70 to 13.24g/100g FA in L and from 5.25 to 16.77 in H, with higher results in the in H treatment (P<0.001). Baseline rumenic acid was sharply increased (P<0.001) in L (1.80 to 4.09g/100g FA, +127%) and H (1.60 to 4.61g/100g FA, +187%) with no differences between L and H (P<0.19). Overall, these results indicate a pronounced improvement in the nutritional value of milk fat from grazing buffaloes fed little amounts (0.276g/day) of a blend of soybean and linseed oils.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 912 ◽  
Author(s):  
Robert Bodkowski ◽  
Katarzyna Czyż ◽  
Anna Wyrostek ◽  
Paulina Cholewińska ◽  
Ewa Sokoła-Wysoczańska ◽  
...  

The aim of the study was to examine the effect of dietary supplementation of isomerized poppy seed oil (IPO) enriched with conjugated dienes of linoleic acid (CLA) on cow and sheep milk parameters (fat content, fatty acid profile, Δ9-desaturase index, and atherogenic index). The process of poppy seed oil alkaline isomerization caused the formation of CLA isomers with cis-9,trans-11, trans-10,cis-12, and cis-11,trans-13 configurations in the amounts of 31.2%, 27.6%, and 4.1% of total fatty acids (FAs), respectively. Animal experiments were conducted on 16 Polish Holstein Friesian cows (control (CTRL) and experimental (EXP), n = 8/group) and 20 East Friesian Sheep (CTRL and EXP, n = 10/group). For four weeks, animals from EXP groups received the addition of IPO in the amount of 1% of dry matter. Milk was collected three times: on days 7, 14, and 30. Diet supplementation with IPO decrease milk fat content (p < 0.01). Milk fat from EXP groups had higher levels of polyunsaturated fatty acids, including FAs with beneficial biological properties, that is, CLA and TVA (p < 0.01), and lower levels of saturated fatty acids, particularly short- (p < 0.01) and medium-chain FAs (p < 0.05). The addition of IPO led to a decrease in the atherogenic index.


2005 ◽  
Vol 72 (3) ◽  
pp. 349-361 ◽  
Author(s):  
Kevin J Shingfield ◽  
Pirjo Salo-Väänänen ◽  
Eero Pahkala ◽  
Vesa Toivonen ◽  
Seija Jaakkola ◽  
...  

Based on potential health benefits, there is a need to develop effective strategies for enhancing milk fat concentrations of cis-9 18[ratio ]1, 18[ratio ]3 n-3 and conjugated linoleic (CLA) content in milk without compromising the sensory or storage characteristics of processed milk or dairy products. Sixteen Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-d experimental periods and a 4×2×2 factorial arrangement of treatments to evaluate the effects of forage conservation method, concentrate level and supplements of propylene glycol (PG), and their interactions on milk fatty acid composition and vitamin content. Experimental treatments consisted of four conserved forages offered ad libitum, supplemented with two levels of a standard concentrate (7 or 10 kg/d) and PG (0 and 210 g/d) fed as three equal meals. Primary growths of timothy and meadow fescue sward were conserved by ensiling with none (NA), an inoculant enzyme preparation (IE) or a formic acid based (FORM) additive or as hay 1 week later. Conservation of grass by drying rather than ensiling resulted in lower forage 18[ratio ]2n-6, 18[ratio ]3n-3, total fatty acid and fat-soluble vitamin concentrations. In spite of lower intakes, milk fat 18[ratio ]2n-6 and 18[ratio ]3n-3 content was higher (P<0·05) for hay than for silage diets (12·1, 9·6, 9·6 and 9·3 and 5·00, 3·51, 4·27 and 2·93 g/kg total fatty acids, for hay, NA, IE and FORM silages, respectively). Forage conservation method had no clear effects on milk trans 18[ratio ]1 or CLA content. Compared with silage, hay diets resulted in milk containing lower (P<0·001) riboflavin, α-tocopherol and β-carotene concentrations, but had no effect on ascorbic acid, thiamine, pyridoxine or retinol content. Feeding more concentrates had no effect on milk fatty acid composition or milk vitamin content, other than lowering (P<0·001) 16[ratio ]0 concentrations from 348 to 338 g/kg fatty acids. Supplements of PG led to small (P<0·05) increases in milk 13[ratio ]0 anteiso and 15[ratio ]0 content from 1·06 and 11·3 to 1·22 and 12·6 g/kg fatty acids and reduced (P<0·05) the concentrations of ascorbic acid (16·1 v. 15·1 g/kg milk).


2003 ◽  
Vol 83 (2) ◽  
pp. 323-325 ◽  
Author(s):  
E. K. Okine ◽  
L. A. Goonewardene ◽  
Z. Mir ◽  
P. Mir ◽  
Z. Wang ◽  
...  

Four Alpine does were used in a 4 × 4 Latin square design to determine the effects of feeding canola oil at four levels: 0, 2, 4 and 6% on milk fatty acid profile. The sum of C12:0 + C14:0 + C16:0 (hypercholesterolemic fatty acids) decreased linearly and C18:0 + C18:1: C16:0 (indicator of cholesterolemic tendency of fat source) increased linearly (P < 0.01) with increased canola oil intake. Key words: Goat, milk, fatty acids, canola oil


Sign in / Sign up

Export Citation Format

Share Document