scholarly journals 12 Effects of excess iron and dietary fat on lipid metabolism

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 15-16
Author(s):  
Wan Ma

Abstract Diets rich in fat and energy are associated with metabolic syndrome. Imbalanced systemic iron status has long been epidemiologically associated with obesity-related diseases. The aim of this study is to investigate the interaction between dietary fat and injected iron in the context of glucose and lipid metabolism. C57BL6/J mice were divided into four groups and fed normal chow (NC) and high-fat diet (HFD) with adequate or excess iron for 16 weeks. Excess iron was added by intraperitoneal injection with iron dextran (120 mg/g of body weight) every other week from 4th week (NC+Fe and HFD+Fe), six times in total. The results showed that high iron levels decreased the growth rates of mice without affecting their feed intake. High iron levels increased the adipocyte numbers by 1.6-fold in subcutaneous adipose tissue (SAT) and 3.5-fold in visceral adipose tissue (VAT), while excess iron inhibited their adipocyte hypertrophy. These changes were paralleled by alterations in the levels of enzymes related to hepatic lipid storage and β-oxidation. Especially two key enzymes, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) (P < 0.01) and fat specific protein 27 (FSP27) (P < 0.01) were markedly decreased in iron-treated groups compared with their counterparts. In addition, high iron levels decreased insulin sensitivity by increasing 15% of fasting blood glucose and 23% of insulin levels and the average under curve of intraperitoneal glucose tolerance test (IPGTT) was also decreased (P < 0.05). These results were consistent with the decrease of mRNA expression of enzymes related to hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase 1 (PCK1) (P < 0.05) and fructose-1,6-bisphosphatase 1 (FBP1) (P < 0.05) in iron-treated mice. Thus, high-fat diets and iron overload were associated with insulin resistance, modified lipid deposition and iron metabolism. High iron levels could protect mice from high-fat diet induced obesity by decreasing insulin sensitivity.

2019 ◽  
Vol 9 (13) ◽  
pp. 2750 ◽  
Author(s):  
Ga Young Do ◽  
Eun-Young Kwon ◽  
Yun Jin Kim ◽  
Youngji Han ◽  
Seong-Bo Kim ◽  
...  

D-allulose, which has 70% of the sweet taste of sucrose but nearly no calories, has been reported to inhibit the absorption of lipids and suppress body weight gain in obese mice. Fats in non-dairy creamer consist of highly saturated fatty acids, which can cause various lipid disorders when consumed over a long period. We investigated whether D-allulose supplementation alleviates the effects of a non-dairy creamer-enriched high-fat diet on lipid metabolism. High-fat diets enriched with non-dairy creamer were administered to C57BL/6J mice with or without D-allulose supplementation for eight weeks by the pair-feeding design. Lipid metabolic markers were compared between the non-dairy creamer control group (NDC) and non-dairy creamer allulose group (NDCA). Body, adipose tissue, and liver weights, and fasting blood glucose levels, were significantly lower in the NDCA group than in the NDC group. Fecal fatty acid and triglyceride levels were significantly higher in the NDCA group than in the NDC group. Supplementing a non-dairy creamer-enriched high-fat diet with D-allulose improved overall lipid metabolism, including the plasma and hepatic lipid profiles, hepatic and adipose tissue morphology, and plasma inflammatory adipokine levels in mice. These results suggest that D-allulose can be used as a functional food component for preventing body fat accumulation from a high-fat diet that includes hydrogenated plant fats.


2020 ◽  
Vol 319 (3) ◽  
pp. E519-E528
Author(s):  
Thomas Tsiloulis ◽  
Arthe Raajendiran ◽  
Stacey N. Keenan ◽  
Geraldine Ooi ◽  
Renea A. Taylor ◽  
...  

Regional distribution of adipose tissue is an important factor in conferring cardiometabolic risk and obesity-related morbidity. We tested the hypothesis that human visceral adipose tissue (VAT) impairs glucose homeostasis, whereas subcutaneous glutealfemoral adipose tissue (GFAT) protects against the development of impaired glucose homeostasis in mice. VAT and GFAT were collected from patients undergoing bariatric surgery and grafted onto the epididymal adipose tissue of weight- and age-matched severe, combined immunodeficient mice. SHAM mice underwent surgery without transplant of tissue. Mice were fed a high-fat diet after xenograft. Energy homeostasis, glucose metabolism, and insulin sensitivity were assessed 6 wk later. Xenograft of human adipose tissues was successful, as determined by histology, immunohistochemical evaluation of collagen deposition and angiogenesis, and maintenance of lipolytic function. Adipose tissue transplant did not affect energy expenditure, food intake, whole body substrate partitioning, or plasma free fatty acid, triglyceride, and insulin levels. Fasting blood glucose was significantly reduced in GFAT and VAT compared with SHAM, whereas glucose tolerance was improved only in mice transplanted with VAT compared with SHAM mice. This improvement was not associated with differences in whole body insulin sensitivity or plasma insulin between groups. Together, these data suggest that VAT improves glycemic control and GFAT does not protect against the development of high-fat diet-induced glucose intolerance. Hence, the intrinsic properties of VAT and GFAT do not necessarily explain the postulated negative and positive effects of these adipose tissue depots on metabolic health.


2020 ◽  
Vol 11 (5) ◽  
pp. 3926-3940 ◽  
Author(s):  
Isabella Supardi Parida ◽  
Soo Takasu ◽  
Junya Ito ◽  
Ryoichi Ikeda ◽  
Kenji Yamagishi ◽  
...  

Supplementation of Bacillus amyloliquefaciens AS385 culture broth powder in high-fat diet restored adiposity, glucose tolerance and insulin sensitivity in mice.


2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan Yang ◽  
Wenting Zhang ◽  
Xiaohui Wu ◽  
Jing Wu ◽  
Chengjun Sun ◽  
...  

Objective. Our recent study demonstrated that growth differentiation factor 5 (GDF5) could promote white adipose tissue thermogenesis and alleviate high-fat diet- (HFD-) induced obesity in fatty acid-binding protein 4- (Fabp4-) GDF5 transgenic mice (TG). Here, we further investigated the effects of systemic overexpression of the GDF5 gene in adipocytes HFD-induced nonalcoholic fatty liver disease (NAFLD). Methods. Fabp4-GDF5 TG mice were administered an HFD feeding. NAFLD-related indicators associated with lipid metabolism and inflammation were measured. A GDF5 lentiviral vector was constructed, and the LO2 NAFLD cell model was induced by FFA solution (oleic acid and palmitic acid). The alterations in liver function, liver lipid metabolism, and related inflammatory indicators were analyzed. Results. The liver weight was significantly reduced in the TG group, which was in accordance with the significantly downregulated expression of TNFα, MCP1, Aim2, and SREBP-1c and significantly upregulated expression of CPT-1α and ACOX2 in TG mouse livers. Compared to that of cells in the FAA-free control group, LO2 cells with in situ overexpression of GDF5 developed lipid droplets after FFA treatment; the levels of triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were significantly increased in both the GDF5 lentivirus and control lentivirus groups compared with those of the FAA-free group. Additionally, the levels of FAS, SREBP-1, CPT-1α, and inflammation-associated genes, such as ASC and NLRC4, were unaltered despite GDF5 treatment. Conclusion. Systemic overexpression of GDF5 in adipose tissue in vivo significantly reduced HFD-induced NAFLD liver damage in mice. The overexpression of GDF5 in hepatocytes failed to improve lipid accumulation and inflammation-related reactions induced by mixed fatty acids, suggesting that the protective effect of GDF5 in NAFLD was mainly due to the reduction in adipose tissue and improvements in metabolism. Hence, our study suggests that the management of NAFLD should be targeted to reduce the overall amount of body fat and improve metabolic status before the progression to nonalcoholic steatohepatitis occurs.


Author(s):  
Randall F. D'Souza ◽  
Stewart W.C. Masson ◽  
Jonathan S. T. Woodhead ◽  
Samuel L James ◽  
Caitlin MacRae ◽  
...  

Neutrophils accumulate in insulin sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high fat diet (HFD) were randomized to receive 3x weekly i.p injections of either Prolastin (human A1AT; 2mg) or vehicle (PBS) for 10 weeks. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance or insulin sensitivity in chow fed mice. In contrast, Prolastin treatment attenuated HFD induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin-resistance by impairing insulin-induced IRS-1 signaling.


2020 ◽  
Vol 11 (3) ◽  
pp. 2418-2426 ◽  
Author(s):  
Mailin Gan ◽  
Linyuan Shen ◽  
Shujie Wang ◽  
Zhixian Guo ◽  
Ting Zheng ◽  
...  

Genistein may regulate lipid metabolism in adipose tissue of obese mice by regulating the expression of miR-222 and its target genes, BTG2 and adipor1.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document