scholarly journals Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1

2019 ◽  
Vol 97 (12) ◽  
pp. 4965-4973 ◽  
Author(s):  
Jacob T Seibert ◽  
Malavika K Adur ◽  
Ronald B Schultz ◽  
Porsha Q Thomas ◽  
Zoe E Kiefer ◽  
...  

Abstract Heat stress (HS) negatively affects both human and farm-animal health and undermines efficiency in a variety of economically important agricultural variables, including reproduction. HS impairs the intestinal barrier, allowing for translocation of the resident microflora and endotoxins, such as lipopolysaccharide (LPS), from the gastrointestinal lumen into systemic circulation. While much is known about the cellular function of heat shock proteins (HSPs) in most tissues, the in vivo ovarian HSP response to stressful stimuli remains ill-defined. The purpose of this study was to compare the effects of HS or LPS on ovarian HSP expression in pigs. We hypothesized that ovarian HSPs are responsive to both HS and LPS. Altrenogest (15 mg/d) was administered per os for estrus synchronization (14 d) prior to treatment and three animal paradigms were used: (i) gilts were exposed to cyclical HS (31 ± 1.4 °C) or thermoneutral (TN; 20 ± 0.5 °C) conditions immediately following altrenogest withdrawal for 5 d during follicular development; (ii) gilts were subjected to repeated (4×/d) saline (CON) or LPS (0.1 μg/kg BW) i.v. infusion immediately following altrenogest withdrawal for 5 d; and (iii) gilts were subjected to TN (20 ± 1 °C) or cyclical HS (31 to 35 °C) conditions 2 d post estrus (dpe) until 12 dpe during the luteal phase. While no differences were detected for transcript abundances of the assessed ovarian HSP, the protein abundance of specific HSP was influenced by stressors during the follicular and luteal phases. HS during the follicular phase tended (P < 0.1) to increase ovarian protein abundance of HSP90AA1 and HSPA1A, and increased (P ≤ 0.05) HSF1, HSPD1, and HSPB1 compared with TN controls, while HS decreased HSP90AB1 (P = 0.01). Exposure to LPS increased (P < 0.05) HSP90AA1 and HSPA1A and tended (P < 0.1) to increase HSF1 and HSPB1 compared with CON gilts, while HSP90AB1 and HSPD1 were not affected by LPS. HS during the luteal phase increased (P < 0.05) abundance of HSPB1 in corpora lutea (CL), decreased (P < 0.05) CL HSP90AB1, but did not impact HSF1, HSPD1, HSP90AA1, or HSPA1A abundance. Thus, these data support that HS and LPS similarly regulate expression of specific ovarian HSP, which suggest that HS effects on the ovary are in part mediated by LPS.

2019 ◽  
Vol 97 (10) ◽  
pp. 4314-4322 ◽  
Author(s):  
Katie L Bidne ◽  
Matthew R Romoser ◽  
Jason W Ross ◽  
Lance H Baumgard ◽  
Aileen F Keating

Abstract Heat stress (HS) occurs when heat dissipation mechanisms are insufficient to maintain euthermia, and it is associated with seasonal infertility (SI), which manifests as smaller litters, longer wean-to-estrus interval, increased abortions, and reduced conception rates. To understand HS-induced mechanisms underlying SI, crossbred post-pubertal gilts (167 ± 10 kg; n = 14) experienced either thermal neutral (TN, 20 ± 1 °C, n = 7) or cyclical HS (35 ± 1 °C for 12 h and 31.6 °C for 12 h, n = 7) conditions from 2 to 12 d post-estrus (dpe). Estrous cycles were synchronized via altrenogest administration for 14 d, phenotypic manifestation of estrus was observed and gilts were assigned to experimental treatment. Gilts were limit fed 2.7 kg daily with ad libitum water access. Blood was collected at 0, 4, 8, and 12 dpe via jugular venipuncture and animals were humanely euthanized at 12 dpe. The corpora lutea (CL) width were measured via digital calipers on both ovaries, and CL from one ovary were excised, weighed, and protein and steroid abundance analyzed via western blotting and ELISA, respectively. Relative to TN, HS increased (P < 0.01) rectal temperature and respiration rates and reduced (P < 0.01) feed intake. The CL from HS ovaries were reduced in diameter (P < 0.05) and weight (P < 0.01) relative to those from TN animals. No difference (P = 0.38) in CL or serum progesterone concentrations between groups was observed at any time point, though at 12 dpe the serum progesterone:CL weight was increased (P < 0.10) by HS. No treatment differences (P = 0.84) in circulating insulin were observed. Luteal protein abundance of steroid acute regulatory protein, 3 beta-hydroxysteroid, or prostaglandin F2α receptor were not different between treatments (P = 0.73). Taken together, these data demonstrate that the CL mass is HS sensitive, but this phenotype does not appear to be explained by the metrics evaluated herein. Regardless, HS-induced decreased CL size may have important implications to pig SI and warrants additional attention.


1998 ◽  
Vol 116 (3) ◽  
pp. 1151-1161 ◽  
Author(s):  
Teri Chizue Suzuki ◽  
Denise C. Krawitz ◽  
Elizabeth Vierling

2002 ◽  
Vol 29 (8) ◽  
pp. 935 ◽  
Author(s):  
Scott A. Heckathorn ◽  
Samantha L. Ryan ◽  
Joanne A. Baylis ◽  
Dongfang Wang ◽  
E. William Hamilton III ◽  
...  

Previous in vitro experiments indicated that chloroplast small heat-shock proteins (sHsp) could associate with thylakoids and protect PSII during heat and other stresses, possibly by stabilizing the O2-evolving complex (OEC). However, in vivo evidence of sHsp protection of PSII is equivocal at present. Using previously characterized selection genotypes of Agrostis stolonifera Huds. that differ in thermotolerance and production of chloroplast sHsps, we show that both genotypes contain thylakoid-associating sHsps, but the heat-tolerant genotype, which produces an additional sHsp isoform not made by the sensitive genotype, produces a greater quantity of chloroplast and thylakoid sHsp. Following a pre-heat stress to induce sHsps, in vivo PSII function decreased less at high temperatures in the tolerant genotype. Differences in PSII thermotolerance in vivo were associated with increased thermotolerance of the OEC proteins and O2-evolving function of PSII, and not with other PSII proteins or functions examined. In vivo cross-linking experiments indicated that a greater amount of sHsp associated with PSII proteins during heat stress in the tolerant genotype. PSII was the most thermosensitive component of photosynthetic electron transport, and no differences between genotypes in the thermotolerance of other electron transport components were observed. These results indicate that in vivo chloroplast sHsps can protect O2 evolution and the OEC proteins of PSII during heat stress.


2010 ◽  
Vol 22 (1) ◽  
pp. 159
Author(s):  
T. E. Baby ◽  
P. M. Bartlewski

Ovarian antral follicles in sheep grow in an orderly succession, producing typically 3 to 4 follicular waves per 17-day estrous cycle. Each wave is preceded by a transient increase in circulating FSH concentrations. The mechanism controlling the number of recurrent FSH peaks and emerging follicular waves remains unknown. During the ewe's estrous cycle, the time between the first 2 FSH peaks and days of wave emergence is longer than the intervals separating the ensuing FSH peaks and follicular waves. The prolonged inter-peak/inter-wave interval occurs early in the luteal phase when low levels of progesterone are secreted by developing, or non-fully functional, corpora lutea. The purpose of the present study was to determine the effect of varying progesterone (P4) levels on circulating concentrations of FSH and antral follicular development in sheep. Exogenous P4 (15 mg per ewe i.m.) was administered twice daily to 6 cycling Rideau Arcott × Dorset ewes from Day 0 (ovulation) to Day 4 (the mean duration of the inter-wave interval); 6 animals served as controls. Follicular growth was monitored in all animals by daily transrectal ultrasonography (Days 0 to 9). Jugular blood samples were drawn twice a day from Day 0 to 4 and then daily until Day 9 to measure systemic concentrations of P4 and FSH. The first FSH peak post-ovulation was detected on Day 1.4 ± 0.2 and 4.0 ± 0.2 in treated and control ewes, respectively (P < 0.05). The next FSH peak(s) occurred on Days 3.4 ± 0.3 and 5.2 ± 0.2 in the treatment group and on Day 5.5 ± 0.3 in controls. Consequently, the treatment group had, on average, 3 follicular waves emerging on Days 0, 3, and 6, whereas the controls produced 2 waves emerging on Days 0 and 5 (P < 0.05).We then retrospectively analyzed and compared daily serum concentrations of P4 and FSH obtained in cyclic Western White Face ewes (Columbia × Rambouillet) that had 3 (n = 10) or 4 (n = 19) follicular waves per cycle. Mean P4 concentrations were greater (P < 0.05) in sheep with 4 waves per cycle compared with their counterparts, which had 3 waves of follicular growth. Interestingly, the ewes with 3 waves exceeded (P < 0.05) all animals with 4 follicular waves in mean serum FSH concentrations on Days 0 to 2, 6 to 7, and 9 to 15 post-ovulation. In summary, creation of mid-luteal phase levels of P4 in metestrus shortened the time to the first post-ovulatory FSH peak in ewes, resulting in emergence of one more follicular wave compared with control animals during the same time frame. The ewes exhibiting 4 waves of follicular emergence had greater serum levels of P4 but lower FSH concentrations compared with sheep with 3 waves per cycle. Therefore, progesterone appears to be a key endocrine signal governing the control of periodic increases in serum FSH concentrations and the number of follicular waves in cyclic sheep. This study was funded by OMAFRA and NSERC grants. Appreciation is extended to Norman C. Rawlings, Susan Cook, and Sekallu Srinivas (University of Saskatchewan) and the staff at Ponsonby Sheep Research Station.


2016 ◽  
Vol 310 (11) ◽  
pp. R1288-R1296 ◽  
Author(s):  
Shanthi Ganesan ◽  
Carmen Reynolds ◽  
Katrin Hollinger ◽  
Sarah C. Pearce ◽  
Nicholas K. Gabler ◽  
...  

Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts ( n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle.


2011 ◽  
Vol 23 (2) ◽  
pp. 303 ◽  
Author(s):  
Tanya E. Baby ◽  
Pawel M. Bartlewski

Ovarian antral follicles in sheep grow in an orderly succession, producing typically three to four follicular waves per 17-day oestrous cycle. Each wave is preceded by a transient increase in circulating FSH concentrations. The mechanism controlling the number of recurrent FSH peaks and emerging follicular waves remains unknown. During the ewe’s oestrous cycle, the time between the first two FSH peaks and days of wave emergence is longer than the intervals separating the ensuing FSH peaks and follicular waves. The prolonged interpeak and interwave interval occurs early in the luteal phase when low levels of progesterone are secreted by developing, or not fully functional, corpora lutea (CL). The purpose of the present study was to determine the effect of varying progesterone (P4) levels on circulating concentrations of FSH and antral follicular development in sheep. Exogenous P4 (15 mg per ewe, i.m.) was administered twice daily to six cycling Rideau Arcott × Dorset ewes from Day 0 (ovulation) to Day 4 (the mean duration of the interwave interval); six animals served as controls. Follicular growth was monitored in all animals by daily transrectal ultrasonography (Days 0–9). Jugular blood samples were drawn twice a day from Day 0 to Day 4 and then daily until Day 9 to measure systemic concentrations of P4, FSH and 17β-oestradiol (E2). The first FSH peak after ovulation was detected on Days 1.5 ± 0.2 and 4.2 ± 0.2 in treated and control ewes, respectively (P < 0.05). The next FSH peak(s) occurred on Day 3.9 ± 0.3 in the treated group and on Day 6.4 ± 0.5 in the control group. Consequently, the treated group had, on average, three follicular waves emerging on Days 0, 3 and 6, whereas the control group had two waves emerging on Days 0 and 5. Mean serum E2 concentrations were greater (P < 0.05) in control compared with treated ewes on Days 1.3, 2.3, 3.3, 4.0 and 4.3 after ovulation. In summary, creation of mid-luteal phase levels of P4 in metoestrus shortened the time to the first post-ovulatory FSH peak in ewes, resulting in the emergence of one more follicular wave compared with control ewes during the same time frame. Therefore, P4 appears to be a key endocrine signal governing the control of periodic increases in serum FSH concentrations and the number of follicular waves in cycling sheep.


1998 ◽  
Vol 332 (3) ◽  
pp. 703-712 ◽  
Author(s):  
Evelyn T. MAIZELS ◽  
Carl A. PETERS ◽  
Michael KLINE ◽  
Richard E. CUTLER ◽  
Malathy SHANMUGAM ◽  
...  

Small heat-shock proteins (sHSPs) are widely expressed 25–28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-δ. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-δ is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-δ using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-δ effectively catalysed the phosphorylation of sHSP in vitro, and PKC-α was 30–50% as effective as an HSP-kinase; other PKCs tested (β1, β2, ε and ζ) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the observation of enhanced luteal HSP-27 phosphorylation in vivo, in late pregnancy, when PKC-δ is abundant and active, suggests that select PKC family members contribute to sHSP phosphorylation events in vivo.


2014 ◽  
Vol 11 (3) ◽  
pp. 2276-2284 ◽  
Author(s):  
HONGBO CHEN ◽  
ABDELNASIR ADAM ◽  
YANFEN CHENG ◽  
SHU TANG ◽  
JÖRG HARTUNG ◽  
...  

2022 ◽  
Vol 335 ◽  
pp. 00046
Author(s):  
Rafika Febriani Putri ◽  
Tri Eko Susilorini ◽  
Nashi Widodo ◽  
Kuswati Kuswati ◽  
Suyadi Suyadi

Among the various climate variables, heat stress has been reported to be the most detrimental factor to the economy of the livestock industry. Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Heat shock proteins (HSPs), also known as molecular chaperons, are prominent stress markers. Heat shock proteins consist of highly conserved protein expressed at the time of stress, and play an important role in adaptation to the environmental stress. This review discusses the scientific evidence regarding the effects of heat stress and role of HSP during heat stress on Goats.


Sign in / Sign up

Export Citation Format

Share Document