scholarly journals 157 The effect of sample handling methodology on ruminal redox potential measured in vivo and in vitro

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 54-54
Author(s):  
Madeline E Rivera ◽  
Aaron B Norris ◽  
Luis O Tedeschi

Abstract Anaerobic metabolism in a biological system, such as the rumen, depends largely on the reducing power of the bacterial population present. For that reason, it is crucial to understand the relationship between redox potential (Eh) and fermentative activity. The diverse microbial profile is characterized by enzyme systems capable of maintaining a constant, yet ever-evolving rumen environment. Variation in Eh is a result of intrinsic and extrinsic factors, including measurement procedure, diet, temperature, and animal. Because Eh is sensitive to oxygen contamination, the objective of this study was to assess different procedures for post-collection rumen inoculum to determine Eh. Four hours after feeding, ten rumen fistulated steers (267.9 ± 8.4 kg), receiving a grower diet, had rumen inoculum (600 mL per animal) extracted using a vacuum suction device and Eh was measured in vivo simultaneously. One subset of samples was incubated in a 39°C water bath (Procedure 1), while the second subset of samples was placed in an ice bath (Procedure 2). Redox potential and temperature were measured at 5, 15, 30, 60, 120, and 240 minutes for both Procedures. For Procedures 1 and 2, Eh values ranged from -235.4 to -313.1 mV and -198.0 to -293.4 mV, respectively. Data were analyzed using orthogonal contrasts with animal within-day and day as random effects in the statistical model. There was no effect for Procedure × Time (P = 0.273) or Time (P = 0.396), but there were differences between Procedures (P < 0.001). Polynomial contrasts indicated quadratic tendencies for Procedure 1 and the interaction of Procedure x Time (P = 0.051 and P = 0.0776, respectively). This study concluded that Procedure 2 more accurately represents in vivo Eh values, likely due to the reduced rate of fermentation associated with samples preserved on ice.

2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Praneetha Pallerla ◽  
Narsimha Reddy Yellu ◽  
Ravi Kumar Bobbala

Abstract Background The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate. Results Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis. Conclusions All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 153 ◽  
Author(s):  
Keisuke Yoshida ◽  
Toru Hisabori

Thiol-based redox regulation ensures light-responsive control of chloroplast functions. Light-derived signal is transferred in the form of reducing power from the photosynthetic electron transport chain to several redox-sensitive target proteins. Two types of protein, ferredoxin-thioredoxin reductase (FTR) and thioredoxin (Trx), are well recognized as the mediators of reducing power. However, it remains unclear which step in a series of redox-relay reactions is the critical bottleneck for determining the rate of target protein reduction. To address this, the redox behaviors of FTR, Trx, and target proteins were extensively characterized in vitro and in vivo. The FTR/Trx redox cascade was reconstituted in vitro using recombinant proteins from Arabidopsis. On the basis of this assay, we found that the FTR catalytic subunit and f-type Trx are rapidly reduced after the drive of reducing power transfer, irrespective of the presence or absence of their downstream target proteins. By contrast, three target proteins, fructose 1,6-bisphosphatase (FBPase), sedoheptulose 1,7-bisphosphatase (SBPase), and Rubisco activase (RCA) showed different reduction patterns; in particular, SBPase was reduced at a low rate. The in vivo study using Arabidopsis plants showed that the Trx family is commonly and rapidly reduced upon high light irradiation, whereas FBPase, SBPase, and RCA are differentially and slowly reduced. Both of these biochemical and physiological findings suggest that reducing power transfer from Trx to its target proteins is a rate-limiting step for chloroplast redox regulation, conferring distinct light-responsive redox behaviors on each of the targets.


2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2021 ◽  
Vol 1 (1) ◽  
pp. 41-52
Author(s):  
Chioma E. Irozuru Irozuru ◽  
Janet O. Olugbodi ◽  
Uche Okuu Arunsi ◽  
Olusola Ladeji

Background: Allium cepa, Allium sativum, and Monodora myristica are commonly sourced food condiments in every household in Nigeria. In the present study, we investigated the phytochemical compositions, in vitro and in vivo antioxidant activity of these plants. Methods: The aqueous extracts from the A. cepa, A. sativum, and M. myristica were evaluated for phytochemical composition using standard protocols while the antioxidant activities were evaluated using the reducing power assay. Forty-five (45) Male Wistar rats (weighing 185±10 g) were divided into five groups (n=9) and were orally administered with 100 mg/kg BW each of A. sativum, M. myristica, A. cepa, and ascorbic acid while the control group received 0.5 mL/kg BW distilled water alone. Animals (n=3) from each group were sacrificed after the 20th, 25th, and 30th days of oral administration. The blood and tissue samples were collected for the analysis of biochemical parameters. Result: Our results revealed the presence of flavonoids, alkaloids, tannins, saponins, and terpenes in the plant extracts. A. sativum had the highest reducing power capacity followed by M. myristica and then A. cepa. The in vitro antioxidants activities demonstrated by the plant extracts were higher than that of ascorbic acid but less than butylated hydroxytoluene. In vivo antioxidant studies showed a marked increase (p<0.05) in the level of catalase with a concurrent decrease (p<0.05) in the levels of MDA and H2O2 in the liver and kidney of rats administered with aqueous extracts of the condiments compared to the normal control and ascorbic acid in the following order control < ascorbic acid < A. cepa < M. myristica < A. sativum. Conclusion: Based on these findings, we infer that the aqueous extracts of A. cepa, A. sativum, and M. myristica are rich in antioxidants and as a result could serve as promising novel functional foods and nutraceuticals


2006 ◽  
Vol 191 (1) ◽  
pp. 101-111 ◽  
Author(s):  
David J Flint ◽  
Nadine Binart ◽  
Stephanie Boumard ◽  
John J Kopchick ◽  
Paul Kelly

Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40–50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.


2000 ◽  
Vol 113 (15) ◽  
pp. 2695-2703 ◽  
Author(s):  
W. Norris ◽  
C. Neyt ◽  
P.W. Ingham ◽  
P.D. Currie

Muscles are composed of several fibre types, the precise combination of which determines muscle function. Whereas neonatal and adult fibre type is influenced by a number of extrinsic factors, such as neural input and muscle load, there is little knowledge of how muscle cells are initially determined in the early embryo. In the zebrafish, fibres of the slow twitch class arise from precociously specified myoblasts that lie close to the midline whereas the remainder of the myotome differentiates as fast myosin expressing muscle. In vivo evidence has suggested the Sonic Hedgehog glycoprotein, secreted from the notochord, controls the formation of slow twitch and fast twitch muscle fates. Here we describe an in vitro culture system that we have developed to test directly the ability of zebrafish myoblasts to respond to exogenous Sonic Hedgehog peptide. We find that Sonic Hedgehog peptide can control the binary cell fate choice of embryonic zebrafish myoblasts in vitro. We have also used this culture system to assay the relative activities of different Hedgehog-family proteins and to investigate the possible involvement of heterotrimeric G-proteins in Hedgehog signal transduction.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Oren Ben-Zvi ◽  
Eyal Dafni ◽  
Yael Feldman ◽  
Iftach Yacoby

Abstract Background Hydrogen is considered a promising energy vector that can be produced from sustainable resources such as sunlight and water. In green algae, such as Chlamydomonas reinhardtii, photoproduction of hydrogen is catalyzed by the enzyme [FeFe]-hydrogenase (HydA). Although highly efficient, this process is transitory and thought to serve as a release valve for excess reducing power. Up to date, prolonged production of hydrogen was achieved by the deprivation of either nutrients or light, thus, hindering the full potential of photosynthetic hydrogen production. Previously we showed that the enzyme superoxide dismutase (SOD) can enhance HydA activity in vitro, specifically when tied together to a fusion protein. Results In this work, we explored the in vivo hydrogen production phenotype of HydA–SOD fusion. We found a sustained hydrogen production, which is dependent on linear electron flow, although other pathways feed it as well. In addition, other characteristics such as slower growth and oxygen production were also observed in Hyd–SOD-expressing algae. Conclusions The Hyd–SOD fusion manages to outcompete the Calvin–Benson cycle, allowing sustained hydrogen production for up to 14 days in non-limiting conditions.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Ying Zou ◽  
Min Zhang ◽  
Tingrui Zhang ◽  
Junwen Wu ◽  
Jun Wang ◽  
...  

The flavonoid fraction was obtained from Elsholtiza bodinieri Vaniot (EBV) by ethanol-reflux and liquid-liquid extraction. The total content of flavonoid was 179.55 mg/g, and the purity was 64.6%. Then cynaroside with the purity of 94% was isolated from the fraction by preparative HPLC and characterized by the combined usage of HPLC, ESI-MS, and NMR. The antioxidant activity of cynaroside was determined using 2 complementary methods, namely, 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assay. The anti-inflammatory effect of cynaroside was investigated based on in-vitro and in-vivo experiment. The results showed that cynaroside from EBV scavenged DPPH radical and reduced Fe3+ to Fe2+ effectively, inhibited NO and ROS production in LPS-stimulated RAW264.7 cells and attenuated the inflammation in the mouse model significantly ( p < 0.01), which showed it to be a nutraceutical product in the food industry.


Sign in / Sign up

Export Citation Format

Share Document