Side Effects of Organic Products on Telenomus podisi (Hymenoptera: Platygastridae)

2020 ◽  
Vol 113 (4) ◽  
pp. 1694-1701
Author(s):  
Lucas Battisti ◽  
Jheniffer V Warmling ◽  
Claudinei F Vieira ◽  
Darlin H R Oliveira ◽  
Yuri R A Lima ◽  
...  

Abstract Telenomus podisi Ashmead, 1893 is an important biocontrol agent, both in conventional and organic production systems. It can be used in association with other control strategies, such as natural botanical products and biological insecticides. Studies of selectivity and side effects are fundamental for proper management of insect control strategies because the interaction between different control strategies may negatively affect T. podisi. In this context, the present study evaluated the side effects of commercial natural products on T. podisi under laboratory conditions. Five natural products (insecticide, fungicide, and leaf fertilizer) allowed in organic farming were evaluated at concentrations recommended by the manufacturer in three bioassays. First bioassay (free-choice test), the preference of T. podisi parasitism between treated and non-treated E. heros eggs was assessed. In the second and third bioassay (no-choice tests) the treatments were applied to E. heros eggs, repectively before and after T. podisi parasitism (pre- and post-parasitism) and parasitism, emergence, offspring sex ratio, developmental time, and adult longevity were assessed. The products formulated with Metarhizium anisopliae (Metsch.) Sorok. (Hypocreales), Beauveria bassiana (Bals.) Vuill. (Hypocreales), orange oil fertilizer, and the fungicide copper oxychloride did not have side effects on T. podisi because they did not affect most of the evaluated characteristics. In contrast, azadirachtin A/B had a sublethal effect due to the reduced parasitism in all tests performed and, although it did not affect other aspects, this could compromise the performance of the parasitoid.

Author(s):  
Zeba Firdaus ◽  
Tryambak Deo Singh

: Alzheimer’s disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically it is described by cognitive impairment, and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of the AD in recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities such as anti-amyloidogenic, anticholinesterase, and antioxidant. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divine Ekwem ◽  
Thomas A. Morrison ◽  
Richard Reeve ◽  
Jessica Enright ◽  
Joram Buza ◽  
...  

AbstractIn Africa, livestock are important to local and national economies, but their productivity is constrained by infectious diseases. Comprehensive information on livestock movements and contacts is required to devise appropriate disease control strategies; yet, understanding contact risk in systems where herds mix extensively, and where different pathogens can be transmitted at different spatial and temporal scales, remains a major challenge. We deployed Global Positioning System collars on cattle in 52 herds in a traditional agropastoral system in western Serengeti, Tanzania, to understand fine-scale movements and between-herd contacts, and to identify locations of greatest interaction between herds. We examined contact across spatiotemporal scales relevant to different disease transmission scenarios. Daily cattle movements increased with herd size and rainfall. Generally, contact between herds was greatest away from households, during periods with low rainfall and in locations close to dipping points. We demonstrate how movements and contacts affect the risk of disease spread. For example, transmission risk is relatively sensitive to the survival time of different pathogens in the environment, and less sensitive to transmission distance, at least over the range of the spatiotemporal definitions of contacts that we explored. We identify times and locations of greatest disease transmission potential and that could be targeted through tailored control strategies.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2796 ◽  
Author(s):  
Vanessa Shi Li Goh ◽  
Chee-Keng Mok ◽  
Justin Jang Hann Chu

Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.


Plant Disease ◽  
2002 ◽  
Vol 86 (2) ◽  
pp. 156-161 ◽  
Author(s):  
P. A. Abbasi ◽  
J. Al-Dahmani ◽  
F. Sahin ◽  
H. A. J. Hoitink ◽  
S. A. Miller

Field trials were conducted over 2 years to assess the effects of compost amendments on disease development in organic and conventional processing tomato (Lycopersicon esculentum L.) production systems. The incidence of anthracnose fruit rot was reduced in organic tomato plots amended with a high rate of composted cannery wastes compared with the incidence in nonamended control plots in 1998 when disease incidence was high. Marketable yield was increased by 33% in compost-amended organic plots. Plots amended with a high compost rate had more ripe fruit than the nonamended control. The incidence of anthracnose and of total disease on fruit was less on the cultivar OH 8245 than on Peto 696. Total fruit yield of OH 8245 but not Peto 696 in organic plots was increased by amendment with composted cannery wastes. In conventional tomato production, composted yard wastes increased disease severity on foliage both years but reduced bacterial spot incidence on fruit in 1997, when disease pressure was high. The incidence of anthracnose was not affected by composted yard wastes. Marketable and total fruit yields of Peto 696 were not increased in compost-amended conventional plots. The plant activator Actigard reduced foliar disease severity and the incidence of bacterial spot and anthracnose on fruit, while increasing yield of marketable fruit.


2021 ◽  
Vol 22 ◽  
Author(s):  
Harsha Negi ◽  
Meenakshi Gupta ◽  
Ramanpreet Walia ◽  
Moayad Khataibeh ◽  
Maryam Sarwat

: Obesity is a major lifestyle disorder and it is correlated with several ailments. The prevalence of obesity has elevated over the years and it has become a global health problem. The drugs presently used for managing obesity have several side-effects associated with them such as diarrhoea, leakage of oily stools, etc. On the contrary, herbal plants and natural products are considered safe for use because they have lesser side effects. New compounds isolated from medicinal plants are screened and identified to determine their effectiveness and potential in preventing abnormal weight gain. In this review, the medicinal plants and natural materials were surveyed across the literature to cover those that have potential for managing and controlling weight gain, and their mechanism of action, active component, and experimental methodologies are also included. These herbal products can be developed as formulations for therapeutic use in obesity. The herbal plants mentioned in the review are classified based on their mechanism of action: inhibition of pancreatic lipase and appetite suppression activities. The ability to inhibit pancreatic lipase enzyme has been used to determine the effectiveness of herbal products for the prevention of abnormal weight gain because of its action on dietary fat and suppression of appetite. This review is an attempt to summarize the herbal plants and natural products that can be used to develop formulations effective in controlling weight gain and obesity.


2019 ◽  
Vol 98 (4) ◽  
pp. 1559-1567 ◽  
Author(s):  
D. Freihold ◽  
T. Bartels ◽  
S. Bergmann ◽  
J. Berk ◽  
F. Deerberg ◽  
...  

2009 ◽  
Vol 89 (13) ◽  
pp. 2275-2282 ◽  
Author(s):  
Anissa Riahi ◽  
Chafik Hdider ◽  
Mustapha Sanaa ◽  
Néji Tarchoun ◽  
Mohamed Ben Kheder ◽  
...  

2008 ◽  
Vol 5 (2) ◽  
pp. 165-166 ◽  
Author(s):  
Blaine Pfeifer

Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 385 ◽  
Author(s):  
Verónica Ruiz-Torres ◽  
Maria Losada-Echeberría ◽  
Maria Herranz-López ◽  
Enrique Barrajón-Catalán ◽  
Vicente Galiano ◽  
...  

Mammalian target of rapamycin (mTOR) is a PI3K-related serine/threonine protein kinase that functions as a master regulator of cellular growth and metabolism, in response to nutrient and hormonal stimuli. mTOR functions in two distinct complexes—mTORC1 is sensitive to rapamycin, while, mTORC2 is insensitive to this drug. Deregulation of mTOR’s enzymatic activity has roles in cancer, obesity, and aging. Rapamycin and its chemical derivatives are the only drugs that inhibit the hyperactivity of mTOR, but numerous side effects have been described due to its therapeutic use. The purpose of this study was to identify new compounds of natural origin that can lead to drugs with fewer side effects. We have used computational techniques (molecular docking and calculated ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) parameters) that have enabled the selection of candidate compounds, derived from marine natural products, SuperNatural II, and ZINC natural products, for inhibitors targeting, both, the ATP and the rapamycin binding sites of mTOR. We have shown experimental evidence of the inhibitory activity of eleven selected compounds against mTOR. We have also discovered the inhibitory activity of a new marine extract against this enzyme. The results have been discussed concerning the necessity to identify new molecules for therapeutic use, especially against aging, and with fewer side effects.


Sign in / Sign up

Export Citation Format

Share Document