scholarly journals PIP5k1β controls bone homeostasis through modulating both osteoclast and osteoblast differentiation

2019 ◽  
Vol 12 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Xiaoying Zhao ◽  
Penglei Cui ◽  
Guoli Hu ◽  
Chuandong Wang ◽  
Lei Jiang ◽  
...  

Abstract PIP5k1β is crucial to the generation of phosphotidylinosotol (4, 5)P2. PIP5k1β participates in numerous cellular activities, such as B cell and platelet activation, cell phagocytosis and endocytosis, cell apoptosis, and cytoskeletal organization. In the present work, we aimed to examine the function of PIP5k1β in osteoclastogenesis and osteogenesis to provide promising strategies for osteoporosis prevention and treatment. We discovered that PIP5k1β deletion in mice resulted in obvious bone loss and that PIP5k1β was highly expressed during both osteoclast and osteoblast differentiation. Deletion of the gene was found to enhance the proliferation and migration of bone marrow-derived macrophage-like cells to promote osteoclast differentiation. PIP5k1β−/− osteoclasts exhibited normal cytoskeleton architecture but stronger resorption activity. PIP5k1β deficiency also promoted activation of mitogen-activated kinase and Akt signaling, enhanced TRAF6 and c-Fos expression, facilitated the expression and nuclear translocation of NFATC1, and upregulated Grb2 expression, thereby accelerating osteoclast differentiation and function. Finally, PIP5k1β enhanced osteoblast differentiation by upregulating master gene expression through triggering smad1/5/8 signaling. Therefore, PIP5k1β modulates bone homeostasis and remodeling.

2018 ◽  
Author(s):  
Xiaoying Zhao ◽  
Guoli Hu ◽  
Chuandong Wang ◽  
Lei Jiang ◽  
Jingyu Zhao ◽  
...  

AbstractPIP5K1β is crucial to generation of phosphotidylinosotol (4, 5) P2. PIP5K1β participates in numerous cellular activities, such as B cell and platelet activation, cell phagocytosis and endocytosis, cell apoptosis, and cytoskeletal organization. In the present work, we aimed to make insight into the function of PIP5K1β in osteoclastogenesis and osteogenesis to provide promising strategies for osteoporosis prevention and treatment. We discovered that PIP5k1β deletion in mice resulted in obvious bone loss and PIP5K1β was highly expressed both during osteoclast and osteoblast differentiation, besides, PIP5K1β deletion enhanced the proliferation and migration of BMMs to promote osteoclast differentiation. PIP5k1β−/− osteoclast exhibited normal cytoskeleton architecture but stronger resorption activity. PIP5k1β deficiency also promoted activation of MAPK and Akt signaling, enhanced TRAF6 and c-Fos expression, facilitated the expression and nuclear translocation of NFATC1 and upregulated Grb2 expression, thereby accelerating osteoclast differentiation and function. Finally, PIP5K1β enhanced osteoblast differentiation by upregulating master genes expression through triggering smad1/5/8 signaling. Thereby, PIP5K1β modulate bone homeostasis and remodeling.


2020 ◽  
Vol 22 (1) ◽  
pp. 222
Author(s):  
Eun-Nam Kim ◽  
Ga-Ram Kim ◽  
Jae Sik Yu ◽  
Ki Hyun Kim ◽  
Gil-Saeng Jeong

In bone homeostasis, bone loss due to excessive osteoclasts and inflammation or osteolysis in the bone formation process cause bone diseases such as osteoporosis. Suppressing the accompanying oxidative stress such as ROS in this process is an important treatment strategy for bone disease. Therefore, in this study, the effect of (2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (BAG), an arylbutanoid glycoside isolated from Betula platyphylla var. japonica was investigated in RANKL-induced RAW264.7 cells and LPS-stimulated MC3E3-T1 cells. BAG inhibited the activity of TRAP, an important marker of osteoclast differentiation and F-actin ring formation, which has osteospecific structure. In addition, the protein and gene levels were suppressed of integrin β3 and CCL4, which play an important role in the osteoclast-induced bone resorption and migration of osteoclasts, and inhibited the production of ROS and restored the expression of antioxidant enzymes such as SOD and CAT lost by RANKL. The inhibitory effect of BAG on osteoclast differentiation and ROS production appears to be due to the inhibition of MAPKs phosphorylation and NF-κβ translocation, which play a major role in osteoclast differentiation. In addition, BAG inhibited ROS generated by LPS and effectively restores the mineralization of lost osteoblasts, thereby showing the effect of bone formation in the inflammatory situation accompanying bone loss by excessive osteoclasts, suggesting its potential as a new natural product-derived bone disease treatment.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3119 ◽  
Author(s):  
Shin-Hye Kim ◽  
Kwang-Jin Kim ◽  
Hyeon Kang ◽  
Young-Jin Son ◽  
Sik-Won Choi ◽  
...  

The number of patients with bone metabolic disorders including osteoporosis is increasing worldwide. These disorders often facilitate bone fractures, which seriously impact the patient’s quality of life and could lead to further health complications. Bone homeostasis is tightly regulated to balance bone resorption and formation. However, many anti-osteoporotic agents are broadly categorized as either bone forming or anti-resorptive, and their therapeutic use is often limited due to unwanted side effects. Therefore, safe and effective therapeutic agents are needed for osteoporosis. This study aims to clarify the bone protecting effects of oat bran water extract (OBWE) and its mode of action. OBWE inhibited RANKL (receptor activator of nuclear factor-κB ligand)-induced osteoclast differentiation by blocking c-Fos/NFATc1 through the alteration of I-κB. Furthermore, we found that OBWE enhanced BMP-2-stimulated osteoblast differentiation by the induction of Runx2 via Smad signaling molecules. In addition, the anti-osteoporotic activity of OBWE was also evaluated using an in vivo model. OBWE significantly restored ovariectomy-induced bone loss. These in vitro and in vivo results showed that OBWE has the potential to prevent and treat bone metabolic disorders including osteoporosis.


2020 ◽  
Vol 21 (5) ◽  
pp. 1660 ◽  
Author(s):  
Di Li ◽  
Luhui Cai ◽  
Runsha Meng ◽  
Zhihui Feng ◽  
Qiong Xu

Osteoclast differentiation and function are crucial for maintaining bone homeostasis and preserving skeletal integrity. N6-methyladenosine (m6A) is an abundant mRNA modification that has recently been shown to be important in regulating cell lineage differentiation. Nevertheless, the effect of m6A on osteoclast differentiation remains unknown. In the present study, we observed that the m6A level and methyltransferase METTL3 expression increased during osteoclast differentiation. Mettl3 knockdown resulted in an increased size but a decreased bone-resorbing ability of osteoclasts. The expression of osteoclast-specific genes (Nfatc1, c-Fos, Ctsk, Acp5 and Dcstamp) was inhibited by Mettl3 depletion, while the expression of the cellular fusion-specific gene Atp6v0d2 was upregulated. Mechanistically, Mettl3 knockdown elevated the mRNA stability of Atp6v0d2 and the same result was obtained when the m6A-binding protein YTHDF2 was silenced. Moreover, the phosphorylation levels of key molecules in the MAPK, NF-κB and PI3K-AKT signaling pathways were reduced upon Mettl3 deficiency. Depletion of Mettl3 maintained the retention of Traf6 mRNA in the nucleus and reduced the protein levels of TRAF6. Taken together, our data suggest that METTL3 regulates osteoclast differentiation and function through different mechanisms involving Atp6v0d2 mRNA degradation mediated by YTHDF2 and Traf6 mRNA nuclear export. These findings elucidate the molecular basis of RNA epigenetic regulation in osteoclast development.


2012 ◽  
Vol 199 (7) ◽  
pp. 1145-1158 ◽  
Author(s):  
Hyung Joon Kim ◽  
Vikram Prasad ◽  
Seok-Won Hyung ◽  
Zang Hee Lee ◽  
Sang-Won Lee ◽  
...  

The precise regulation of Ca2+ dynamics is crucial for proper differentiation and function of osteoclasts. Here we show the involvement of plasma membrane Ca2+ ATPase (PMCA) isoforms 1 and 4 in osteoclastogenesis. In immature/undifferentiated cells, PMCAs inhibited receptor activator of NF-κB ligand–induced Ca2+ oscillations and osteoclast differentiation in vitro. Interestingly, nuclear factor of activated T cell c1 (NFATc1) directly stimulated PMCA transcription, whereas the PMCA-mediated Ca2+ efflux prevented NFATc1 activation, forming a negative regulatory loop. PMCA4 also had an anti-osteoclastogenic effect by reducing NO, which facilitates preosteoclast fusion. In addition to their role in immature cells, increased expression of PMCAs in mature osteoclasts prevented osteoclast apoptosis both in vitro and in vivo. Mice heterozygous for PMCA1 or null for PMCA4 showed an osteopenic phenotype with more osteoclasts on bone surface. Furthermore, PMCA4 expression levels correlated with peak bone mass in premenopausal women. Thus, our results suggest that PMCAs play important roles for the regulation of bone homeostasis in both mice and humans by modulating Ca2+ signaling in osteoclasts.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zhihui Xiao ◽  
Wenjun Wu ◽  
Vladimir Poltoratsky

Chronic inflammation is associated with cancer. CXCL8 promotes tumor microenvironment construction through recruiting leukocytes and endothelial progenitor cells that are involved in angiogenesis. It also enhances tumor cell proliferation and migration. Metformin, type II diabetes medication, demonstrates anticancer properties via suppressing inflammation, tumor cell proliferation, angiogenesis, and metastasis. This study intended to address the role of metformin in regulation of CXCL8 expression and cell proliferation and migration. Our data indicated that metformin suppressed LPS-induced CXCL8 expression in a dose-dependent manner through inhibiting NF-κB, but not AP-1 and C/EBP, activities under the conditions we used. This inhibitory effect of metformin is achieved through dampening LPS-induced NF-κB nuclear translocation. Cell migration was inhibited by metformin under high dose (10 mM), but not cell proliferation.


Author(s):  
James A. Oo ◽  
Ralf P. Brandes ◽  
Matthias S. Leisegang

AbstractLong non-coding RNAs were once considered as “junk” RNA produced by aberrant DNA transcription. They are now understood to play central roles in diverse cellular processes from proliferation and migration to differentiation, senescence and DNA damage control. LncRNAs are classed as transcripts longer than 200 nucleotides that do not encode a peptide. They are relevant to many physiological and pathophysiological processes through their control of fundamental molecular functions. This review summarises the recent progress in lncRNA research and highlights the far-reaching physiological relevance of lncRNAs. The main areas of lncRNA research encompassing their characterisation, classification and mechanisms of action will be discussed. In particular, the regulation of gene expression and chromatin landscape through lncRNA control of proteins, DNA and other RNAs will be introduced. This will be exemplified with a selected number of lncRNAs that have been described in numerous physiological contexts and that should be largely representative of the tens-of-thousands of mammalian lncRNAs. To some extent, these lncRNAs have inspired the current thinking on the central dogmas of epigenetics, RNA and DNA mechanisms.


2021 ◽  
Vol 28 (3) ◽  
pp. 223-230
Author(s):  
Jung Ha Kim ◽  
Yong Ryoul Yang ◽  
Ki-Sun Kwon ◽  
Nacksung Kim

Background: Multiple members of the transforming growth factor-β (TGF-β) superfamily have well-established roles in bone homeostasis. Anti-Müllerian hormone (AMH) is a member of TGF-β superfamily of glycoproteins that is responsible for the regression of fetal Müllerian ducts and the transcription inhibition of gonadal steroidogenic enzymes. However, the involvement of AMH in bone remodeling is unknown. Therefore, we investigated whether AMH has an effect on bone cells as other TGF-β superfamily members do.Methods: To identify the roles of AMH in bone cells, we administered AMH during osteoblast and osteoclast differentiation, cultured the cells, and then stained the cultured cells with Alizarin red and tartrate-resistant acid phosphatase, respectively. We analyzed the expression of osteoblast- or osteoclast-related genes using real-time polymerase chain reaction and western blot.Results: AMH does not affect bone morphogenetic protein 2-mediated osteoblast differentiation but inhibits receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation. The inhibitory effect of AMH on osteoclast differentiation is mediated by IκB-NF-κB signaling.Conclusions: AMH negatively regulates osteoclast differentiation without affecting osteoblast differentiation.


Author(s):  
Xiaobin Yang ◽  
Dingjun Hao ◽  
Baorong He

: The E3 ubiquitin ligases Cbl has been found play an important role in regulating cellular proliferation and migration. Whereas the excessive differentiation of osteoclast and/or its over expressing of resorptive functions could lead the pathological bone homeostasis by overly bone matrix degradation. Since the first time of the important role of Cbl in the regulating osteoclast differentiation (also named osteoclastogenesis) has been reported in decades ago. The extensively studies have been conducted for in-depth exploring the Cbl’s definite role during osteoclastogenesis, as well as its cross talking with other signaling pathways (such as: Src and PI3K signaling) in bone homeostasis. Herein, our current study aim to briefly conclude the current studies of osteoclastogenesis and the regulatory role of Cbl, as well as its cross-talking in bone homeostasis.


2010 ◽  
Vol 78 (9) ◽  
pp. 3726-3735 ◽  
Author(s):  
Yu-Hsiung Wang ◽  
Jin Jiang ◽  
Qiang Zhu ◽  
Amer Z. AlAnezi ◽  
Robert B. Clark ◽  
...  

ABSTRACT Porphyromonas gingivalis produces unusual sphingolipids that are known to promote inflammatory reactions in gingival fibroblasts and Toll-like receptor 2 (TLR2)-dependent secretion of interleukin-6 from dendritic cells. The aim of the present study was to examine whether P. gingivalis lipids inhibit osteoblastic function. Total lipids from P. gingivalis and two fractions, phosphoglycerol dihydroceramides and phosphoethanolamine dihydroceramides, were prepared free of lipid A. Primary calvarial osteoblast cultures derived from 5- to 7-day-old CD-1 mice were used to examine the effects of P. gingivalis lipids on mineralized nodule formation, cell viability, apoptosis, cell proliferation, and gene expression. P. gingivalis lipids inhibited osteoblast differentiation and fluorescence expression of pOBCol2.3GFP in a concentration-dependent manner. However, P. gingivalis lipids did not significantly alter osteoblast proliferation, viability, or apoptosis. When administered during specific intervals of osteoblast growth, P. gingivalis total lipids demonstrated inhibitory effects on osteoblast differentiation only after the proliferation stage of culture. Reverse transcription-PCR confirmed the downregulation of osteoblast marker genes, including Runx2, ALP, OC, BSP, OPG, and DMP-1, with concurrent upregulation of RANKL, tumor necrosis factor alpha, and MMP-3 genes. P. gingivalis total lipids and lipid fractions inhibited calvarial osteoblast gene expression and function in vivo, as determined by the loss of expression of another osteoblast differentiation reporter, pOBCol3.6GFPcyan, and reduced uptake of Alizarin complexone stain. Finally, lipid inhibition of mineral nodule formation in vitro was dependent on TLR2 expression. Our results indicate that inhibition of osteoblast function and gene expression by P. gingivalis lipids represents a novel mechanism for altering alveolar bone homeostasis at periodontal disease sites.


Sign in / Sign up

Export Citation Format

Share Document