Comparisons of Respiratory Pupal Gill Development in Black Flies (Diptera: Simuliidae) Shed Light on the Origin of Dipteran Prothoracic Dorsal Appendages

Author(s):  
Yao Ming Yang ◽  
Qian Sun ◽  
Jiang-Fan Xiu ◽  
Ming Yang

Abstract During the transformation of immature aquatic dipteran insects to terrestrial adults, the prothoracic pupal respiratory organ enables pupae to cope with flood-drought alternating environments. Despite its obvious importance, the biology of the organ, including its development, is poorly understood. In this study, the developing gills of several Simulium Latreille (Diptera: Simuliidae) spp. were observed using serial histological sections and compared with data on those of other dipteran families published previously. The formation of some enigmatic features that made the Simulium gill unique is detailed. Through comparisons between taxa, we describe a common developmental pattern in which the prothoracic dorsal disc cells not only morph into the protruding respiratory organ, which is partially or entirely covered with a cuticle layer of plastron, but also invaginate to form a multipart internal chamber that in part gives rise to the anterior spiracle of adult flies. The gill disc resembles wing and leg discs and undergoes cell proliferation, axial outgrowth, and cuticle sheath formation. The overall appendage-like characteristics of the dipteran pupal respiratory organ suggest an ancestral form that gave rise to its current forms, which added more dimensions to the ways that arthropods evolved through appendage adaptation. Our observations provide important background from which further studies into the evolution of the respiratory organ across Diptera can be carried out.

Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1291-1301 ◽  
Author(s):  
M. Boedigheimer ◽  
A. Laughon

The expanded gene was first identified by a spontaneous mutation that causes broad wings. We have identified an enhancer-trap insertion within expanded and used it to generate additional mutations, including one null allele. expanded is an essential gene, necessary for proper growth control of imaginal discs and, when mutant, causes either hyperplasia or degeneration depending on the disc. Wing overgrowth in expanded hypermorphs is limited to specific regions along the anterior-posterior and dorsal-ventral axis. expanded encodes a novel 1429 amino acid protein that is localized to the apical surface of disc cells and contains three potential SH3-binding sites. Together, these observations suggest that the Expanded protein engages in protein-protein interactions regulating cell proliferation in discs.


2021 ◽  
Author(s):  
Junhua Gong ◽  
Minghua Cong ◽  
Hao Wu ◽  
Menghao Wang ◽  
He Bai ◽  
...  

Abstract Background The capacity of the liver to restore its architecture and function assures good prognoses of patients who suffer serious hepatic injury or cancer resection. In our study, we found that the P53/miR-34a/SIRT1 positive feedback loop has a remarkable negative regulatory effect, which is related to the termination of liver regeneration. Here, we described how P53/miR-34a/SIRT1 positive feedback loop controls liver regeneration and its possible relationship with liver cancer.Method We performed partial hepatectomy (PH) in mice transfected with adenovirus (Ade) overexpressing P53 and adenovirus-associated virus (AAV) knock-downing miR-34a. LR was analyzed by liver weight/body weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were investigated. Bile acid (BA) levels during LR were analyzed by metabolomics of bile acids. Results We found that the P53/miR-34a/SIRT1 positive feedback loop was activated in the late phase of LR. Overexpression of P53 terminated LR early and enhanced P53/miR-34a/SIRT1 positive feedback loop expression and its proapoptotic effect. Mice from the Ade-P53 group showed smaller livers and higher levels of serum ALT and AST than control mice. While knock-down of miR-34a abolished P53/miR-34a/SIRT1 positive feedback loop during LR. Mice from anti-miR-34a group showed larger livers and lower levels of PCNA-positive cells than control mice. T-β-MCA increased gradually during LR and peaked at 7 days after PH. T-β-MCA inhibited cell proliferation and promoted cell apoptosis via facilitating the P53/miR-34a/SIRT1 positive feedback loop during LR by suppressing FXR/SHP. Conclusion The P53/miR-34a/SIRT1 positive feedback loop plays an important role in the termination of LR. Our findings shed light on the molecular and metabolic mechanisms of LR termination and provide a potential therapeutic alternative for treating P53-wild-type HCC patients.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and have been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences, there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSC-derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods hMSCs were isolated from bone marrow aspirate, and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the sEVs at 5 × 1010 vesicles/ml concentration for 28 days and compared to control. The pellets were harvested at days 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis, and cytokine secretions. Results The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEV-treated DC pellets compared to control cultures. Further, sEV treatment suppressed secretion of MMP-1 in the DCs. Conclusion hMSC-derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


2020 ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background: Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and has been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSCs derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods: hMSCs were isolated from bone marrow aspirate and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the EVs at 5x1010 vesicles/mL concentration for 28 days and compared to control. The pellets were harvested at day 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis and cytokine secretions.Results: The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEVs treated DC pellets compared to control cultures. Further, sEVs treatment suppressed secretion of MMP-1 in the DCs. Conclusion: hMSC derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


Development ◽  
2001 ◽  
Vol 128 (4) ◽  
pp. 603-615 ◽  
Author(s):  
J. Treisman

We have identified mutations in two genes, blind spot and kohtalo, that encode Drosophila homologues of human TRAP240 and TRAP230, components of a large transcriptional coactivation complex homologous to the yeast Mediator complex. Loss of either blind spot or kohtalo has identical effects on the development of the eye-antennal disc. Eye disc cells mutant for either gene can express decapentaplegic and atonal in response to Hedgehog signaling, but they maintain inappropriate expression of these genes and fail to differentiate further. Mutant cells in the antennal disc lose expression of Distal-less and misexpress eyeless, suggesting a partial transformation towards the eye fate. blind spot and kohtalo are not required for cell proliferation or survival, and their absence cannot be rescued by activation of the Hedgehog or Notch signaling pathways. These novel and specific phenotypes suggest that TRAP240 and TRAP230 act in concert to mediate an unknown developmental signal or a combination of signals.


2017 ◽  
Vol 284 (1852) ◽  
pp. 20170157 ◽  
Author(s):  
Louise N. Perez ◽  
Jamily Lorena ◽  
Carinne M. Costa ◽  
Maysa S. Araujo ◽  
Gabriela N. Frota-Lima ◽  
...  

The unique eyes of the four-eyed fish Anableps anableps have long intrigued biologists. Key features associated with the bulging eye of Anableps include the expanded frontal bone and the duplicated pupils and cornea. Furthermore, the Anableps retina expresses different photoreceptor genes in dorsal and ventral regions, potentially associated with distinct aerial and aquatic stimuli. To gain insight into the developmental basis of the Anableps unique eye, we examined neurocranium and eye ontogeny, as well as photoreceptor gene expression during larval stages. First, we described six larval stages during which duplication of eye structures occurs. Our osteological analysis of neurocranium ontogeny revealed another distinctive Anablepid feature: an ossified interorbital septum partially separating the orbital cavities. Furthermore, we identified the onset of differences in cell proliferation and cell layer density between dorsal and ventral regions of the retina. Finally, we show that differential photoreceptor gene expression in the retina initiates during development, suggesting that it is inherited and not environmentally determined. In sum, our results shed light on the ontogenetic steps leading to the highly derived Anableps eye.


2013 ◽  
Vol 33 (2) ◽  
Author(s):  
Ulrike Schnell ◽  
Jeroen Kuipers ◽  
Ben N. G. Giepmans

EpCAM [epithelial cell adhesion molecule; CD326 (cluster of differentiation 326)] is highly expressed on epithelium-derived tumours and can play a role in cell proliferation. Recently, RIP (regulated intramembrane proteolysis) has been implicated as the trigger for EpCAM-mediated proliferative signalling. However, RIP does not explain all EpCAM-derived protein fragments. To shed light on how proteolytic cleavage is involved in EpCAM signalling, we characterized the protein biochemically using antibodies binding to three different EpCAM domains. Using a newly generated anti-EpCAM antibody, we find that EpCAM can be cleaved at multiple positions within its ectodomain in addition to described peptides, revealing that EpCAM is processed via distinct proteolytic pathways. Here, we report on four new peptides, but also discuss the previously described cleavage products to provide a comprehensive picture of EpCAM cleavage at multiple positions. The complex regulation of EpCAM might not only result in the absence of full-length EpCAM, but the newly formed EpCAM-derived proteins may have their own signalling properties.


2020 ◽  
Author(s):  
Daphne Hingert ◽  
Karin Ekström ◽  
Jonathan Aldridge ◽  
Rosella Crescitelli ◽  
Helena Brisby

Abstract Background Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and has been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSCs derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. Methods hMSCs were isolated from bone marrow aspirate and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the EVs at 5 × 1010 vesicles/mL concentration for 28 days and compared to control. The pellets were harvested at day 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis and cytokine secretions. Results The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEVs treated DC pellets compared to control cultures. Further, sEVs treatment suppressed secretion of MMP-1 in the DCs. Conclusion hMSC derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


Author(s):  
Steven F. Perry ◽  
Markus Lambertz ◽  
Anke Schmitz

The aim of this book is to shed light on one of the most fundamental processes of life in the various lineages of animals: respiration. It provides a certain background on the physiological side of respiration, but it clearly focuses on the morphological aspects. In general, the intention of this book is to illustrate the impressive diversity of respiratory faculties (form–function complexes) rather than serving as an encyclopaedic handbook. It takes the reader on a journey through the entire realm of animals and discusses the structures involved in gas exchange, how they work, and most importantly, how all of this may be connected on an evolutionary scale. Due to the common problem, namely oxygen uptake and carbon dioxide release, and the limited number of solutions, basically surface area, barrier thickness, and physical exchange model of the respiratory organ, it is not surprising that one finds a huge number of convergences. These include, for instance, the repeated origin of tubular tracheae among several lineages of arthropods, similar lung structures in snails and amphibians, and counter-current exchange gills in bivalves and fish. However, there are certain phylogenetic constraints evident and the respiratory faculty appears as a yet to be adequately exploited source of information for systematic considerations. The ultimate goal of this book is to stimulate further research in respiratory biology, because a huge number of questions remain to be tackled on all levels, ranging from molecular through functional to especially the evolutionary aspects.


Author(s):  
Yaschar Kabiri ◽  
Anna Fuhrmann ◽  
Anna Becker ◽  
Luisa Jedermann ◽  
Carola Eberhagen ◽  
...  

Augmenter of liver regeneration (ALR) is a critical multi-isoform protein with its longer isoform, located in the mitochondrial intermembrane space, being part of the mitochondrial disulfide relay system (DRS). Upregulation of ALR was observed in multiple forms of cancer, among them hepatocellular carcinoma (HCC). To shed light into ALR function in HCC, we used MitoBloCK-6 to pharmacologically inhibit ALR, resulting in profound mitochondrial impairment and cancer cell proliferation deficits. These effects were mostly reversed by supplementation with bioavailable hemin b, linking ALR function to mitochondrial iron homeostasis. Since many tumor cells are known for their increased iron demand and since increased iron levels in cancer are associated with poor clinical outcome, these results help to further advance the intricate relation between iron and mitochondrial homeostasis in liver cancer.


Sign in / Sign up

Export Citation Format

Share Document