RNAi-Mediated Screening of Selected Target Genes Against Culex quinquefasciatus (Diptera: Culicidae)

Author(s):  
Sayed M S Khalil ◽  
Kashif Munawar ◽  
Azzam M Alahmed ◽  
Ahmed M A Mohammed

Abstract Culex quinquefasciatus, a member of the Culex pipiens complex, is widespread in Saudi Arabia and other parts of the world. It is a vector for lymphatic filariasis, Rift Valley fever, and West Nile virus. Studies have shown the deleterious effect of RNA interference (RNAi)-mediated knockdown of various lethal genes in model and agricultural pest insects. RNAi was proposed as a tool for mosquito control with a focus on Aedes aegypti and Anopheles gambiae. In this study, we examined the effect of RNAi of selected target genes on both larval mortality and adult emergence of Cx. quinquefasciatus through two delivery methods: soaking and nanoparticles. Ten candidate genes were selected for RNAi based on their known lethal effect in other insects. Disruption of three genes, chitin synthase-1, inhibitor of apoptosis 1, and vacuolar adenosine triphosphatase, resulted in the highest mortality among the selected genes using the two treatment methods. Silencing the other seven genes resulted in a medium to low mortality in both assays. These three genes are also active against a wide range of insects and could be used for RNAi-based mosquito control in the future.

2021 ◽  
Vol 66 (1) ◽  
pp. 73-79
Author(s):  
Lei Luo

A field study about the effectiveness of a new truck-mounted ultra-low-volume (ULV) machine against larval Culex quinquefasciatus Say was conducted at Anastasia Mosquito Control District of St. Johns County, St. Augustine, FL, during the summer of 2017. Cx. quinquefasciatus larvae were treated using a ground application at different concentrations of Bti using a new truck-mounted ULV sprayer with a horizontal nozzle. Mortality of larvae was recorded after 24 h, and droplet sizes were measured. Overall, Bti sprayed by the new truck-mounted ULV spraying machine at a concentration of 2.625 mg/L resulted in the highest mortality of mosquito larvae. The results indicate that the Bti concentrations of 0.875 mg/L and 0.065 mg/L resulted in a significant difference in mean larval mortality between each distance from the spray line (P < 0.05), while the mortality by the other 3 concentrations (0.477 mg/L, 2.625 mg/L, and 5.25 mg/L) tested did not. The LC50 and LC90 of Bti against larvae were 0.261 mg/L (0.239~0.286) and 1.687 mg/L (1.481~1.922), respectively. The coverage (swath) of the spray by the new ULV machine showed that the Bti could be sprayed at least 33 meters away with a 20 meter width. Therefore, the new truck-mounted ULV spraying machine with liquid Bti could be used to treat a large area effectively and efficiently and as an additional tool for the control of mosquito larvae.


2012 ◽  
Vol 44 (3) ◽  
pp. 15 ◽  
Author(s):  
Arjunan Nareshkumar ◽  
Kadarkarai Murugan ◽  
Indra Baruah ◽  
Pari Madhiyazhagan ◽  
Thiyagarajan Nataraj

Intervention measures to control the transmission of vector-borne diseases include control of the vector population. In mosquito control, synthetic insecticides used against both the larvae (larvicides) and adults (adulticides) create numerous problems, such as environmental pollution, insecticide resistance and toxic hazards to humans. In the present study, a bacterial pesticide,<em> Bacillus sphaericus</em> (Bs G3-IV), was used to control the dengue and filarial vectors, <em>Aedes aegypti</em> and <em>Culex quinquefasciatus</em>. <em>Bacillus sphaericus </em>(Bs G3-IV) was very effective against<em> Aedes aegypti</em> and <em>Culex quinquefasciatus</em>, showing significant larval mortality. Evaluated lethal concentrations (LC<sub>50</sub> and LC<sub>90</sub>) were age-dependent, with early instars requiring a lower concentration compared with later stages of mosquitoes. <em>Culex quinquefasciatus</em> was more susceptible to <em>Bacillus sphaericus</em> (Bs G3-IV) than was <em>Aedes aegypti</em>. Fecundity rate was highly reduced after treatment with different concentrations of <em>Bacillus sphaericus</em> (Bs G3-IV). Larval and pupal longevity both decreased after treatment with <em>Bacillus sphaericus</em> (Bs G3-IV), total number of days was lower in the <em>B. sphaericus</em> treatments compared with the control. Our results show the bacterial pesticide <em>Bacillus sphaericus </em>(Bs G3-IV) to be an effective mosquito control agent that can be used for more integrated pest management programs.


Author(s):  
F. B. Adewoyin ◽  
A. B. Odaibo ◽  
C. A. Elusiyan ◽  
J. M. Agbedahunsi

Aim: In a view to determining the capacity of Clerodendrum polycephalum to control mosquitoes, the methanol extract of the leaf was investigated for insecticidal activities using three species of mosquitoes, Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Methodology: The leaves of C. polycephalum were collected, dried and extracted with methanol.   Mosquito larvae were exposed to different concentrations for 24/48h. and sublethal concentrations (L25, 50, 75) of the extract to determine larvicidal activity and monitor growth and development respectively. Twenty (20) blood-fed female Aedes aegyti mosquitoes were allowed to lay eggs on treated filter papers for antioviposition bioassay. The crude extract was separated into N-hexane, Dichloromethane, ethyl-acetate, ethanol fractions using Vacuum Liquid Chromatography to determine the active fraction. Results: Results showed that larval mortalities were in the order C. quiquefasciatus>A. gambiae>A. aegypti with effective concentration ranging from 250 – 8000 ppm. Mortalities at 48hr were significantly different (p<0.05) from mortalities at 24h. Of the four fractions obtained, ethanol fraction gave the highest larval mortality of 100% at 2000 ppm. Larval duration for all the three species of mosquitoes exposed to the crude extract varied between 2.25±0.5 and 3.25±0.5 days. As Antioviposition Index increased from 46.4 - 89.9, percent hatching of mosquito eggs deceased from 87.25 – 67.5% with increasing concentration. Conclusion: The extract of C. polycephalum was found to contain insecticidal compounds which are soluble in polar solvent. The plant could be exploited in mosquito control programme.


2016 ◽  
Vol 14 (2) ◽  
pp. e10SC01 ◽  
Author(s):  
Sergio Pérez-Guerrero ◽  
José M. Molina

Drosophila suzukii (Matsumura, 1931) is an invasive pest from South East Asia that was detected for the first time in Southern Europe in 2008. This species can damage a wide range of soft-skinned fruits crops affecting ripening fruits and causing important economic losses. Since the exclusive use of chemical insecticides for controlling D. suzukii may prompt the appearance of resistance and environmental pollution, alternative methods compatible with sustainable management are required. In this study, commercial formulations of powdered sulphur and kaolin were tested as a preventive method applied to blueberry fruits under laboratory conditions. In no-choice assay, powdered sulphur had a significant effect on oviposition and adult emergency with reductions of 76% and 77%, respectively. In addition, sulphur displayed a significant toxicity on males and lethal effect with over 40% adult mortality seven days after exposure. The choice assay confirmed and improved the powdered sulphur effects, with reductions of 98% and 96% in oviposition and adult emergence, respectively. In contrast, kaolin produced no significant reduction in infestation and adult mortality during no-choice and choice assays. These outcomes suggest that preventive use of powdered sulphur could be considered for sustainable control of D. suzukii in some berry crops.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Ghulam Sarwar ◽  
Naeem Arshad Maan ◽  
Muhammad Ahsin Ayub ◽  
Muhammad Rafiq Shahid ◽  
Mubasher Ahmad Malik ◽  
...  

Abstract Background The armyworms, Spodoptera exigua (Hübner), and S. litura (Fabricius) (Lepidoptera: Noctuidae) are polyphagous pests of many cash crops. Heavy crop losses have been reported for the fruit and vegetable crops each year owing to the diverse impact on global economies. The present study was aimed to sort out a novel method of pest control using the insect’s own nucleopolyhedrosis virus (NPV) alone and in combination with a new chemistry insecticide chlorantraniliprole. Results In the study, the effect of indigenous isolated nucleopolyhedrovirus (NPV) and the chemical insecticide (chlorantraniliprole) formulations against the 2nd and 4th larval instars of S. litura and S. exigua, collected from the different geographical region of Punjab (Pakistan) province, was evaluated. Three concentrations of the NPV isolate, sub-lethal (1 × 104, 6 × 104 POB ml−1), lethal (3 × 105 POB ml−1), and chlorantraniliprole 0.01 μl l−1, were applied alone and in combination against the 2nd and 4th larval instars of both pest species. The lethal concentration of NPV + chlorantraniliprole exhibited synergistic interaction and caused high larval mortality against both instars, while in all other combinations, additive effect was observed. Moreover, NPV + chlorantraniliprole at lethal concentration exhibited decreased pupation, adult emergence, and egg eclosion. Conclusion The implications of using NPV alone and in combination with an insecticide are discussed briefly in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhay Punia ◽  
Nalini Singh Chauhan ◽  
Drishtant Singh ◽  
Anup Kumar Kesavan ◽  
Sanehdeep Kaur ◽  
...  

AbstractThe antibiosis effect of gallic acid on Spodoptera litura F. (Lepidoptera: Noctuidae) and its parasitoid evaluated by feeding six days old larvae on artificial diet incorporated with different concentrations (5 ppm, 25 ppm, 125 ppm, 625 ppm, 3125 ppm) of the phenolic compound revealed higher concentration (LC50) of gallic acid had a negative impact on the survival and physiology of S. litura and its parasitoid Bracon hebetor (Say) (Hymenoptera:Braconidae). The mortality of S. litura larvae was increased whereas adult emergence declined with increasing concentration of gallic acid. The developmental period was delayed significantly and all the nutritional indices were reduced significantly with increase in concentration. Higher concentration (LC50) of gallic acid adversely affected egg hatching, larval mortality, adult emergence and total development period of B. hebetor. At lower concentration (LC30) the effect on B. hebetor adults and larvae was non-significant with respect to control. Gene expression for the enzymes viz., Superoxide dismutase, Glutathione peroxidase, Peroxidase, Esterases and Glutathione S transferases increased while the total hemocyte count of S. litura larvae decreased with treatment. Our findings suggest that gallic acid even at lower concentration (LC30) can impair the growth of S. litura larvae without causing any significant harm to its parasitoid B. hebetor and has immense potential to be used as biopesticides.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Cenk Yucel

Abstract Background The two-spotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae), is a widely distributed plant-feeding pest that causes significant yield losses in a wide range of crops. Newly developed or improved environmentally friendly biocontrol agents serve as an alternative to traditional pest control tools. Experiment of the effects of 2 local fungal isolates of Beauveria bassiana (BGF14 and BCA32) was carried out against T. urticae under laboratory conditions. Results Both tested isolates had lethal effect in a short time after application, and this effect increased as time progressed. BGF14 and BCA32 isolates caused T. urticae mortality rates ranging from 25.88 to 61.92 and 32.36 to 62.03% when applied at the concentrations between 1×105 and 1×108 conidia/ml, respectively. According to the Probit analysis performed on the effect of fungi on T. urticae adults, the LC50 values of BGF14 and BCA32 isolates on the 7th day after inoculation were 2.6×106 and 6.3×104 conidia/ml, respectively, and the LT50 values for both fungi applied at a concentration of 108 conidia/ml were 2.14 and 2.23 days, respectively. Conclusions The 2 isolates of B. bassiana (BGF14 and BCA32) had the potentials to suppress T. urticae population and can be recommended as promising biocontrol agent candidates for control of T. urticae.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Michael Olarewaju Akintan ◽  
Joseph Onaolapo Akinneye ◽  
Oluwatosin Betty Ilelakinwa

Abstract Background Mosquitoes are vectors of parasitic diseases such as malaria, lymphatic filariasis, yellow fever, and dengue fever among others. They are well known as public enemies for their noise nuisance, biting annoyance, sleeplessness, allergic reactions, and diseases transmission during the biting and feeding activities. This then necessitate the search for insecticides of plant origin which are bio-degradable, non-toxic, and readily available for man use. Result This study, evaluated the fumigant efficacy of the powder of P. alliacea to control the adult stage of Culex mosquito. Powder of Petiveria alliacea were administered at different dose of (1 g, 2 g, 3 g, 4 g, and 5 g), respectively. Result obtained shows the fumigant effect of the powder were effective with percentage mortality of 18.33–60.00% for the leaf powder and 23.30–71.60% for the root powder within 2 h post-treatment period (P < 0.05). The synergistic effect of the leaf and root powder was also investigated. The lethal dosage (LD50) of the leaf, root, and synergistic effect of leaf and root bark powder required to kill 50% of the adult Culex quinquefasciatus was 3.76 g, 2.86 g, and 2.63 g, respectively. However, 25.06 g, 15.25 g, and 12.94 g of the leaf, root, and leaf and root powder were required to kill 90% (LD90) after a 2-h exposure period. Conclusion These finding suggested P. alliacea powder could be a good source of insecticide which may be used for the production of biopesticides. The present findings have important implications in the practical control of adult mosquito by using botanical insecticides. These plant powders are easy to prepare, inexpensive, and safe for use in mosquito control.


Author(s):  
Mervat A. Kandil ◽  
Hemat Z. Moustafa

Abstract Background Cotton bollworms such as Pectinophora gossypiella and Earias insulana are serious pests which destroy the cotton plant, and Bracon brevicornis is a parasitoid which attacked the larvae of bollworms. Results In this study, experiments were performed to investigate and evaluate the toxicity of etofenprox and chlorpyrifos insecticides against newly hatched larvae of Pectinophora gossypiella and Earias insulana. Some biological aspects of compound effects on larval and pupal duration, percentage of mortality, and percentage of adult emergence which resulted from treated newly hatched larvae were studied. The results revealed that LC50 was 0.7 and 0.87 ppm when P. gossypiella was treated with etofenprox and chlorpyrifos, respectively, while LC50 was 0.09 and 0.73 ppm when E. insulana was treated with etofenprox and chlorpyrifos, respectively. The obtained results showed that the percentage of mean larval mortality was 65.0 and 63.0% for treated P. gossypiella, while it was 71.0 and 66.0% for treated E. insulana. The corresponding figure for pupal percentage mortality was 8.0 and 10.0% for treated P. gossypiella, but it was 5.0 and 2.0% for treated E. insulana, with etofenprox and chlorpyrifos, and a prolongation effect in larval and pupal development (total immature stage) resulted from treated both bollworms as follows: 35.5 and 32.4 days for treated P. gossypiella compared with 21.9 days in control and 34.7 and 23.2 days for treated E. insulana compared with 23.1 days in control. The indirect effect of etofenprox and chlorpyrifos on the total immature stage of Bracon brevicornis was 18.2 and 19.5 days compared with 14.3 days in control when B. brevicornis parasitized on P. gossypiella larvae while it was 19.8 and 20.6 days compared with 15.2 days when B. brevicornis parasitized on E. insulana larvae. Conclusion The life cycle of B. brevicornis after parasitism on P. gossypiella and E. insulana larvae treated with etofenprox and chlorpyrifos were increased than the control larvae.


Sign in / Sign up

Export Citation Format

Share Document