scholarly journals Sugar sensing responses to low and high light in leaves of the C4 model grass Setaria viridis

Author(s):  
Clémence Henry ◽  
Alexander Watson-Lazowski ◽  
Maria Oszvald ◽  
Cara Griffiths ◽  
Matthew J Paul ◽  
...  

Abstract ABSTRACT :Although sugar regulate photosynthesis, the signalling pathways underlying this process remain elusive, especially for C4 crops. To address this knowledge gap and identify potential candidate genes, we treated Setaria viridis (C4 model) plants acclimated to medium light intensity (ML, 500 µmol m-2 s-1) with low (LL, 50 µmol m-2 s-1) or high (HL, 1000 µmol m-2 s-1) light for 4 days and observed the consequences on carbon metabolism and the transcriptome of source leaves. LL impaired photosynthesis and reduced leaf content of signalling sugars (glucose, sucrose and trehalose-6-phosphate). Contrastingly, HL strongly induced sugar accumulation without repressing photosynthesis. LL more profoundly impacted leaf transcriptome, including photosynthetic genes. LL and HL contrastingly altered the expression of HXK and SnRK1 sugar sensors and trehalose pathway genes. The expression of key target genes of HXK and SnRK1 were affected by LL and sugar depletion, while surprisingly HL and strong sugar accumulation only slightly repressed the SnRK1 signalling pathway. In conclusion, we demonstrate that LL profoundly impacted photosynthesis and the transcriptome of S. viridis source leaves, while HL altered sugar levels more than LL. We also present the first evidence that sugar signalling pathways in C4 source leaves may respond to light intensity and sugar accumulation differently to C3 source leaves.

2015 ◽  
Vol 112 (5) ◽  
pp. 1613-1618 ◽  
Author(s):  
Xin Hou ◽  
Aigen Fu ◽  
Veder J. Garcia ◽  
Bob B. Buchanan ◽  
Sheng Luan

In earlier studies we have identified FKBP20-2 and CYP38 as soluble proteins of the chloroplast thylakoid lumen that are required for the formation of photosystem II supercomplexes (PSII SCs). Subsequent work has identified another potential candidate functional in SC formation (PSB27). We have followed up on this possibility and isolated mutants defective in the PSB27 gene. In addition to lack of PSII SCs, mutant plants were severely stunted when cultivated with light of variable intensity. The stunted growth was associated with lower PSII efficiency and defective starch accumulation. In response to high light exposure, the mutant plants also displayed enhanced ROS production, leading to decreased biosynthesis of anthocyanin. Unexpectedly, we detected a second defect in the mutant, namely in CP26, an antenna protein known to be required for the formation of PSII SCs that has been linked to state transitions. Lack of PSII SCs was found to be independent of PSB27, but was due to a mutation in the previously described cp26 gene that we found had no effect on light adaptation. The present results suggest that PSII SCs, despite being required for state transitions, are not associated with acclimation to changing light intensity. Our results are consistent with the conclusion that PSB27 plays an essential role in enabling plants to adapt to fluctuating light intensity through a mechanism distinct from photosystem II supercomplexes and state transitions.


2005 ◽  
Vol 33 (5) ◽  
pp. 949-952 ◽  
Author(s):  
N. Price-Lloyd ◽  
M. Elvin ◽  
C. Heintzen

The metronomic predictability of the environment has elicited strong selection pressures for the evolution of endogenous circadian clocks. Circadian clocks drive molecular and behavioural rhythms that approximate the 24 h periodicity of our environment. Found almost ubiquitously among phyla, circadian clocks allow preadaptation to rhythms concomitant with the natural cycles of the Earth. Cycles in light intensity and temperature for example act as important cues that couple circadian clocks to the environment via a process called entrainment. This review summarizes our current understanding of the general and molecular principles of entrainment in the model organism Neurospora crassa, a simple eukaryote that has one of the best-studied circadian systems and light-signalling pathways.


2016 ◽  
Vol 28 (12) ◽  
pp. 1873 ◽  
Author(s):  
Xiao-Feng Sun ◽  
Xing-Hong Sun ◽  
Shun-Feng Cheng ◽  
Jun-Jie Wang ◽  
Yan-Ni Feng ◽  
...  

The Notch and transforming growth factor (TGF)-β signalling pathways play an important role in granulosa cell proliferation. However, the mechanisms underlying the cross-talk between these two signalling pathways are unknown. Herein we demonstrated a functional synergism between Notch and TGF-β signalling in the regulation of preantral granulosa cell (PAGC) proliferation. Activation of TGF-β signalling increased hairy/enhancer-of-split related with YRPW motif 2 gene (Hey2) expression (one of the target genes of the Notch pathway) in PAGCs, and suppression of TGF-β signalling by Smad3 knockdown reduced Hey2 expression. Inhibition of the proliferation of PAGCs by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signalling, was rescued by both the addition of ActA and overexpression of Smad3, indicating an interaction between the TGF-β and Notch signalling pathways. Co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assays were performed to identify the point of interaction between the two signalling pathways. CoIP showed direct protein–protein interaction between Smad3 and Notch2 intracellular domain (NICD2), whereas ChIP showed that Smad3 could be recruited to the promoter regions of Notch target genes as a transcription factor. Therefore, the findings of the present study support the idea that nuclear Smad3 protein can integrate with NICD2 to form a complex that acts as a transcription factor to bind specific DNA motifs in Notch target genes, such as Hey1 and Hey2, and thus participates in the transcriptional regulation of Notch target genes, as well as regulation of the proliferation of PAGCs.


2021 ◽  
Vol 21 ◽  
Author(s):  
Reem Mebed ◽  
Yasser BM Ali ◽  
Nahla Shehata ◽  
Nadia El-Guendy ◽  
Nahla Gamal ◽  
...  

Background: Bevacizumab (Bev) resistance is hypothesized to be overcome by combination with inhibitors of other signalling pathways. Objective: We aimed to study the effect of combining Bev with knocked down β-catenin (Bev-β-cat-siRNA) on the expression of VEGF-A, Slug, NFКB and its two target genes c-Flip and FasR in HepG2. Expression of VEGF-A and Slug was also studied in Caco-2 cells. Methods: Cultured cells were divided into six groups 1) cells treated with Bev only 2) cells treated with β-catenin-siRNA 3) cells treated with Bev-β-cat-siRNA 4) cells treated with negative control 5) cells treated with Bev-negative control and untreated cells. Expressions were assessed using qPCR and western blotting. Results: Bev-β-cat-siRNA significantly reduced the mRNA level of VEGF-A, which was initially increased in response to Bev alone in HepG2 but not in Caco-2. Additionally, Bev-β-cat-siRNA significantly decreased Slug mRNA level compared to Bev only treated HepG2 cells. In contrast, VEGF-A and Slug mRNA levels in Bev only group were remarkably lower than Bev-β-cat-siRNA in Caco-2 cells. Distinct β-catenin and Slug protein expressions were noticed in HepG2 and Caco-2 cells. On the other hand, Bev-β-cat-siRNA remarkably reduced the level of NFКB, FasR and c-Flip compared to Bev only treated HepG2 cells although the difference was not statistically significant. Conclusion: We conclude that, combining Bevacizumab with knocked down β-catenin reduce the expression of VEGF-A and Slug in HepG2 but not in Caco-2 cells.


Weed Science ◽  
1972 ◽  
Vol 20 (2) ◽  
pp. 172-176 ◽  
Author(s):  
Paul N. P. Chow

Growth of green foxtail (Setaria viridis (L.) Beauv.) was effectively controlled in the greenhouse by applying the sodium salt of trichloroacetic acid (TCA) as a postemergence treatment, when a rate of 0.84 kg/ha was used; when application preceded the two-leaf stage; and when 2.54 mm of water were available daily for moving TCA into the soil. There were significant interactions of TCA rate with light intensity, temperature, and source of seeds on the response of green foxtail. Seedhead production was curtailed at rates of 0.56 kg/ha or above when plants were grown under high light intensities (19,250 to 22,000 lux) and at moderate temperatures (20 to 22 C). Rates of 1.68 kg/ha or more were required to stop heading of foxtail grown at high temperature (27 C).


Weed Science ◽  
1971 ◽  
Vol 19 (5) ◽  
pp. 555-558 ◽  
Author(s):  
D. Hawton ◽  
E. H. Stobbe

The fate of 2,4-dichlorophenyl p-nitrophenyl ether (nitrofen) in the foliage of rape (Brassica campestris L. ‘Echo’), redroot pigweed (Amaranthus retroflexus L.), and green foxtail (Setaria viridis (L.) Beauv.) was investigated with the aid of 14C-nitrofen. Only limited amounts of the label were translocated in these species. Plants treated with 14C-nitrofen under high light conditions produced several labelled compounds of different molecular size and chromatographic properties. The time at which these compounds were first detectable depended on light intensity. At least two of these compounds are lipid-nitrofen conjugates or nitrofen polymers and others may be formed by cleavage of nitrofen at the ether linkage.


2014 ◽  
Vol 369 (1652) ◽  
pp. 20130513 ◽  
Author(s):  
Ian C. G. Weaver ◽  
Ian C. Hellstrom ◽  
Shelley E. Brown ◽  
Stephen D. Andrews ◽  
Sergiy Dymov ◽  
...  

Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 1 7 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 1 7 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 1 7 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.


2019 ◽  
Vol 101 (3) ◽  
pp. 235-255 ◽  
Author(s):  
Sávio Siqueira Ferreira ◽  
Marcella Siqueira Simões ◽  
Gabriel Garon Carvalho ◽  
Leydson Gabriel Alves de Lima ◽  
Raphael Mendes de Almeida Svartman ◽  
...  
Keyword(s):  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1424-1424
Author(s):  
Bjoern Schneider ◽  
Stefan Nagel ◽  
Maren Kaufmann ◽  
Hilmar Quentmeier ◽  
Yoshinobu Matsuo ◽  
...  

Abstract Genomic amplifications of the 11q23 region occur in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) where MLL and a few neighboring genes, notably DDX6, are deemed salient targets. However, the extent to which amp(lified)-MLL and translocated MLL share effector targets remains to be established. Even less is known about the target(s) of deletions affecting the long arm of chromosome 5 (5q-) which reportedly partner amp-MLL. We analyzed three AML/MDS cell lines by cytogenetics (conventional and FISH) in parallel with real time q(uantitative)-PCR at both 11q23 and 5q2 to measure copy number and expression of salient target genes together with putative downstream targets. The cell lines comprised: MOLM-17 (transforming-MDS), SAML-2 (therapy-related AML), and UOC-M1 (AML-M1). All three cell lines exhibited approximately four-fold genomic amplification of 11q23 including MLL and DDX6, while the amplicon extended telomerically to include FLI1 (11q24) and HNT (11q25) in MOLM-17 and UOC-M1 only. Expression, quantified relative to AML/MDS cell lines without MLL rearrangement, revealed that of the genomically amplified genes only MLL was generally overexpressed, namely by 9.5x (MOLM-17), 5.1x (UOC-M1), and 4.6x (SAML-2). In addition to the highest MLL expression, in MOLM-17 FLI1 (3.8x) and DDX6 (2.8x) were significantly upregulated. Expression was also quantified among reputed MLL target genes, and showed that in the three cell lines MEIS1 was upregulated in MOLM-17 only (by 6x), and CDKN2C in all cell lines (by about 2x), while HOXA9 and CDKN1B showed near-normal levels of expression. All three cell lines carried 5q- with a common deleted region at 5q31 extending from 134.2–137.5 Mbp. Of a panel of genes recently identified as 5q- deletion targets (centromere-TIGA1, CAMLG, C5orf15, C5orf14, BRD8, HARS, KIAA0141, CSNK1A1, RBM22-telomere), only C5orf15 (function unknown) and BRD8 (a component of the nua4 histone acetyltransferase complex involved in transcriptional activation) were generally downregulated - to about 0.25x, and about 0.4x normalized expression levels, respectively. Both genes lie within the common deleted region. In summary, we have characterized amp-MLL and 5q- in MOLM-17, the first MDS cell line to be described with these rearrangements, together with two AML cell lines with similar cytogenetic profiles. Our data suggest that MLL is the only clear object of 11q23 amplification hitherto identified and CDKN2C its sole unequivocal target in AML/MDS cell lines. It is possible that MEIS1 is also targeted for activation in specific cell types or disease phases in MDS. These findings also highlight C5orf15 and/or BRD8 as possible leukemogenic accomplices targeted for downregulation in accompanying 5q-. These findings may point to differences in signalling pathways targeted by amp-MLL in AML and MDS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liya Li ◽  
Xiaoxia Zuo ◽  
Di Liu ◽  
Hui Luo ◽  
Honglin Zhu

Dermatomyositis (DM) is an idiopathic inflammatory myopathy characterized by cutaneous manifestations. We first identified the profiles of noncoding RNAs (lncRNAs and miRNAs) in peripheral neutrophil exosomes (EXOs) of DM patients and explored their potential functional roles. Bioinformatics analyses were performed with R packages. Real-time quantitative PCR was used to validate the altered RNAs in DM neutrophil EXO-stimulated human dermal microvascular endothelial cells (HDMECs) and human skeletal muscle myoblasts (HSkMCs). In DM neutrophil EXOs, 124 upregulated lncRNAs (with 1,392 target genes), 255 downregulated lncRNAs (with 1867 target genes), 17 upregulated miRNAs (with 2,908 target genes), and 15 downregulated miRNAs (with 2,176 target genes) were identified. GO analysis showed that the differentially expressed (DE) lncRNAs and DE miRNAs participated in interleukin-6 and interferon-beta production, skeletal muscle cell proliferation and development, and endothelial cell development and differentiation. KEGG analysis suggested that DE lncRNAs and DE miRNAs were enriched in the PI3K–Akt, MAPK, AMPK and FoxO signalling pathways. Many novel and valuable DE lncRNAs and DE miRNAs interacted and cotargeted in the PI3K–Akt, MAPK, AMPK and FoxO signalling pathways. Our study suggests that neutrophil EXOs participate in DM pathogenesis through lncRNAs and miRNAs in the PI3K–Akt, MAPK, AMPK and FoxO signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document