Anisakiosis (Anisakidosis)

Author(s):  
Woon-Mok Sohn ◽  
Jong-Yil Chai

The term ‘anisakiosis (anisakidosis)’ or ‘anisakiasis’ collectively defines human infections caused by larval anisakids belonging to the nematode family Anisakidae or Raphidascarididae. Anisakis simplex, Anisakis physeteris, and Pseudoteranova decipiens are the three major species causing human anisakiosis. Various kinds of marine fish and cephalopods serve as the second intermediate hosts and the infection source. Ingestion of viable anisakid larvae in the fillet or viscera of these hosts is the primary cause of infection. The parasite does not develop further in humans as they are an accidental host. Clinical anisakiosis develops after the penetration of anisakid larvae into the mucosal wall of the alimentary tract, most frequently the stomach and the small intestine. The affected sites undergo erosion, ulceration, swelling, inflammation, and granuloma formation around the worm. The patients may suffer from acute abdominal pain, indigestion, nausea, vomiting, and in some instances, allergic hypersensitive reactions. Symptoms in gastric anisakiosis often resemble those seen in peptic ulcer or gastric cancer, and symptoms in intestinal anisakiosis resemble those of appendicitis or peritonitis. Treatments include removal of larval worms using a gastroendoscopic clipper or surgical resection of the mucosal tissue surrounding the worm. No confirmed effective anthelmintic drug has been introduced, though albendazole and ivermectin have been tried in vivo and in vitro. Prevention of human anisakiosis can be achieved by careful examination of fish fillet followed by removal of the worms in the restaurant or household kitchen. Immediate freezing of fish and cephalopods just after catching them on fishing boats was reported helpful for prevention of anisakiosis. It is noteworthy that anisakiosis is often associated with strong allergic and hypersensitivity reactions, with symptoms ranging from isolated angioedema to urticaria and life threatening anaphylactic shock.

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1435
Author(s):  
Divya Beri ◽  
Manpreet Singh ◽  
Marilis Rodriguez ◽  
Karina Yazdanbakhsh ◽  
Cheryl Ann Lobo

Babesia is an intraerythrocytic, obligate Apicomplexan parasite that has, in the last century, been implicated in human infections via zoonosis and is now widespread, especially in parts of the USA and Europe. It is naturally transmitted by the bite of a tick, but transfused blood from infected donors has also proven to be a major source of transmission. When infected, most humans are clinically asymptomatic, but the parasite can prove to be lethal when it infects immunocompromised individuals. Hemolysis and anemia are two common symptoms that accompany many infectious diseases, and this is particularly true of parasitic diseases that target red cells. Clinically, this becomes an acute problem for subjects who are prone to hemolysis and depend on frequent transfusions, like patients with sickle cell anemia or thalassemia. Little is known about Babesia’s pathogenesis in these hemoglobinopathies, and most parallels are drawn from its evolutionarily related Plasmodium parasite which shares the same environmental niche, the RBCs, in the human host. In vitro as well as in vivo Babesia-infected mouse sickle cell disease (SCD) models support the inhibition of intra-erythrocytic parasite proliferation, but mechanisms driving the protection of such hemoglobinopathies against infection are not fully studied. This review provides an overview of our current knowledge of Babesia infection and hemoglobinopathies, focusing on possible mechanisms behind this parasite resistance and the clinical repercussions faced by Babesia-infected human hosts harboring mutations in their globin gene.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anne-Gaëlle Leroy ◽  
Jocelyne Caillon ◽  
Nathalie Caroff ◽  
Alexis Broquet ◽  
Stéphane Corvec ◽  
...  

Azithromycin (AZM) is a 15-membered-ring macrolide that presents a broad-spectrum antimicrobial activity against Gram-positive bacteria and atypical microorganisms but suffers from a poor diffusion across the outer-membrane of Gram-negative bacilli, including Pseudomonas aeruginosa (PA). However, AZM has demonstrated clinical benefits in patients suffering from chronic PA respiratory infections, especially cystic fibrosis patients. Since the rise of multidrug-resistant PA has led to a growing need for new therapeutic options, this macrolide has been proposed as an adjunctive therapy. Clinical trials assessing AZM in PA acute pneumonia are scarce. However, a careful examination of the available literature provides good rationales for its use in that context. In fact, 14- and 15-membered-ring macrolides have demonstrated immunomodulatory and immunosuppressive effects that could be of major interest in the management of acute illness. Furthermore, growing evidence supports a downregulation of PA virulence dependent on direct interaction with the ribosomes, and based on the modulation of several key regulators from the Quorum Sensing network. First highlighted in vitro, these interesting properties of AZM have subsequently been confirmed in the animal models. In this review, we systematically analyzed the literature regarding AZM immunomodulatory and anti-PA effects. In vitro and in vivo studies, as well as clinical trials were reviewed, looking for rationales for AZM use in PA acute pneumonia.


2020 ◽  
Vol 6 (4) ◽  
pp. 189
Author(s):  
Lohith Kunyeit ◽  
Anu-Appaiah K A ◽  
Reeta P. Rao

Superficial and life-threatening invasive Candida infections are a major clinical challenge in hospitalized and immuno-compromised patients. Emerging drug-resistance among Candida species is exacerbated by the limited availability of antifungals and their associated side-effects. In the current review, we discuss the application of probiotic yeasts as a potential alternative/ combination therapy against Candida infections. Preclinical studies have identified several probiotic yeasts that effectively inhibit virulence of Candida species, including Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida krusei and Candida auris. However, Saccharomyces cerevisiae var. boulardii is the only probiotic yeast commercially available. In addition, clinical studies have further confirmed the in vitro and in vivo activity of the probiotic yeasts against Candida species. Probiotics use a variety of protective mechanisms, including posing a physical barrier, the ability to aggregate pathogens and render them avirulent. Secreted metabolites such as short-chain fatty acids effectively inhibit the adhesion and morphological transition of Candida species. Overall, the probiotic yeasts could be a promising effective alternative or combination therapy for Candida infections. Additional studies would bolster the application of probiotic yeasts.


Blood ◽  
1995 ◽  
Vol 86 (12) ◽  
pp. 4486-4492 ◽  
Author(s):  
MM Hokom ◽  
D Lacey ◽  
OB Kinstler ◽  
E Choi ◽  
S Kaufman ◽  
...  

Megakaryocyte growth and development factor (MGDF) is a potent inducer of megakaryopoiesis in vitro and thrombopoiesis in vivo. The effects of MGDF appear to be lineage-selective, making this cytokine an ideal candidate for use in alleviating clinically relevant thrombocytopenias. This report describes a murine model of life-threatening thrombocytopenia that results from the combination treatment of carboplatin and sublethal irradiation. Mortality of this regimen is 94% and is associated with widespread internal bleeding. The daily administration of pegylated recombinant human MGDF (PEG-rMGDF) significantly reduced mortality (to < 15%) and ameliorated the depth and duration of thrombocytopenia. The severity of leucopenia and anemia was also reduced, although it was not clear whether these effects were direct. Platelets generated in response to PEG-rMGDF were morphologically indistinguishable from normal platelets. PEG-rMGDF administered in combination with murine granulocyte colony-stimulating factor completely prevented mortality and further reduced leukopenia and thrombocytopenia. These data support the concept that PEG-rMGDF may be useful to treat iatrogenic thrombocytopenias.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pallab Ghosh ◽  
Yan Zhou ◽  
Quentin Richardson ◽  
Darren E. Higgins

AbstractListeria monocytogenes is an intracellular pathogen responsible for listeriosis, a foodborne disease that can lead to life-threatening meningitis. The 2011 L. monocytogenes cantaloupe outbreak was among the deadliest foodborne outbreaks in the United States. We conducted in vitro and in vivo infection analyses to determine whether strains LS741 and LS743, two clinical isolates from the cantaloupe outbreak, differ significantly from the common laboratory strain 10403S. We showed that LS741 and LS743 exhibited increased virulence, characterized by higher colonization of the brain and other organs in mice. Assessment of cellular immune responses to known CD8+ T cell antigens was comparable between all strains. However, pre-existing immunity to 10403S did not confer protection in the brain against challenge with LS741. These studies provide insights into the pathogenesis of clinical isolates linked to the 2011 cantaloupe outbreak and also indicate that currently utilized laboratory strains are imperfect models for studying L. monocytogenes pathogenesis.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Jing Li ◽  
Galit Regev ◽  
Sravan Kumar Patel ◽  
Dorothy Patton ◽  
Yvonne Sweeney ◽  
...  

Human immunodeficiency virus (HIV) infection and unintended pregnancy, which can lead to life-threatening complications, are two major burdens for female reproductive health. To address these pressing health issues, multipurpose prevention technologies (MPTs) are proposed to deliver two or more drugs simultaneously. MPTs could offer several benefits for users such as improved convenience, increased effectiveness, reduced cost, and decreased environmental burden. Here, we report the development, and in vitro and in vivo assessment of a bioadhesive vaginal film as a coitally-independent MPT dosage form for delivering dapivirine (DPV) and levonorgestrel (LNG) to prevent HIV infection and unintended pregnancy, respectively. After confirming the feasibility of bioadhesive film use for weekly drug delivery in vivo through colpophotography and MRI evaluation, the pharmacokinetics (PK) of DPV/LNG single entity and combination bioadhesive films was investigated in pigtailed macaques (n = 5). Both drugs from single entity or combination films were able to provide sustained drug release in vivo. The combination film showed lower local tissue clearance for DPV and exhibited significantly increased plasma concentration for LNG as compared to the single entity film. This proof-of-concept study demonstrates the ability of this novel bioadhesive film platform to deliver LNG and DPV simultaneously as an MPT product for the prevention of HIV infection and unintended pregnancy.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Jessica A. Belser ◽  
Xiangjie Sun ◽  
Nicole Brock ◽  
Claudia Pappas ◽  
Joanna A. Pulit-Penaloza ◽  
...  

ABSTRACT Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses. IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1116
Author(s):  
Emna Benzarti ◽  
Mutien Garigliany

Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.


2020 ◽  
Vol 6 (8) ◽  
pp. eaaw9960 ◽  
Author(s):  
Yuanyuan Qin ◽  
Weilong Chen ◽  
Guojuan Jiang ◽  
Lei Zhou ◽  
Xiaoli Yang ◽  
...  

Triple-negative breast cancer (TNBC) is life-threatening because of limited therapies and lack of effective therapeutic targets. Here, we found that moesin (MSN) was significantly overexpressed in TNBC compared with other subtypes of breast cancer and was positively correlated with poor overall survival. However, little is known about the regulatory mechanisms of MSN in TNBC. We found that MSN significantly stimulated breast cancer cell proliferation and invasion in vitro and tumor growth in vivo, requiring the phosphorylation of MSN and a nucleoprotein NONO-assisted nuclear localization of phosphorylated MSN with protein kinase C (PKC) and then the phosphorylation activation of CREB signaling by PKC. Our study also demonstrated that targeting MSN, NONO, or CREB significantly inhibited breast tumor growth in vivo. These results introduce a new understanding of MSN function in breast cancer and provide favorable evidence that MSN or its downstream molecules might serve as new targets for TNBC treatment.


2019 ◽  
Vol 216 (7) ◽  
pp. 1615-1629 ◽  
Author(s):  
Andreas Naegeli ◽  
Eleni Bratanis ◽  
Christofer Karlsson ◽  
Oonagh Shannon ◽  
Raja Kalluru ◽  
...  

Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.


Sign in / Sign up

Export Citation Format

Share Document