scholarly journals An NMR and Mutational Study of the Pseudoknot Within the Gene 32 mRNA of Bacteriophage T2: Insights into a Family of Structurally Related RNA Pseudoknots

1997 ◽  
Vol 25 (6) ◽  
pp. 1130-1135 ◽  
Author(s):  
Zhihua Du ◽  
David W. Hoffman

Abstract NMR methods were used to investigate a series of mutants of the pseudoknot within the gene 32messenger RNA of bacteriophage T2, for the purpose of investigating the range of sequences, stem and loop lengths that can form a similar pseudoknot structure. This information is of particular relevance since the T2 pseudoknot has been considered a representative of a large family of RNA pseudoknots related by a common structural motif, previously referred to as ‘common pseudoknot motif 1’ or CPK1. In the work presented here, a mutated sequence with the potential to form a pseudoknot with a 6 bp stem2 was shown to adopt a pseudoknot structure similar to that of the wild-type sequence. This result is significant in that it demonstrates that pseudoknots with 6 bp in stem2 and a single nucleotide in loopl are indeed feasible. Mutated sequences with the potential to form pseudoknots with either 5 or 8 bp in stem2 yielded NMR spectra that could not confirm the formation of a pseudoknot structure. Replacing the adenosine nucleotide in loopl of the wild-type pseudoknot with any one of G, C or U did not significantly alter the pseudoknot structure. Taken together, the results of this study provide support for the existence of a family of similarly structured pseudoknots with two coaxially stacked stems, either 6 or 7 bp in stem2, and a single nucleotide in loop1. This family includes many of the pseudo-knots predicted to occur downstream of the frameshift or readthrough sites in a significant number of viral RNAs.

1997 ◽  
Vol 3 (S2) ◽  
pp. 95-96
Author(s):  
D.W. Hoffman ◽  
Z. Du ◽  
J.A. Holland ◽  
M.R. Hansen ◽  
Y. Wang ◽  
...  

Nuclear magnetic resonance (NMR) spectroscopy was used to determine the three-dimensional structure of an RNA pseudoknot with a sequence corresponding to the 5' end region of the gene 32 messenger RNA of bacteriophage T2. NMR results show that the pseudoknot contains two coaxial A-form helical stems connected by two loops. One of the loops consists of a single nucleotide, which spans the major groove of the seven base pair helical stem 2. The second loop consists of 7 nucleotides, and spans the minor groove of stem 1. A three-dimensional model of the pseudoknot that is consistent with the NMR data will be presented, and features that are likely to be important for stabilizing the pseudoknot structure will be described.A combination of NMR and phylogenetic methods were used to characterize the structural features of RNA pseudoknots that are associated with frameshift and readthrough sites within the retroviral gag-pro messenger RNA. The majority of the retroviral frameshift and readthrough sites were found to be followed by nucleotide sequences that have the potential to form pseudoknots with structures that are remarkably similar to that of the bacteriophage T2 gene 32 mRNA.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Xinwen Zhang ◽  
Shaozhi Zhao ◽  
Hongwei Liu ◽  
Xiaoyan Wang ◽  
Xiaolei Wang ◽  
...  

Fucosidosis is a rare lysosomal storage disorder characterized by deficiency of α-L-fucosidase with an autosomal recessive mode of inheritance. Here, we describe a 4-year-old Chinese boy with signs and symptoms of fucosidosis but his parents were phenotypically normal. Whole exome sequencing (WES) identified a novel homozygous single nucleotide deletion (c.82delG) in the exon 1 of the FUCA1 gene. This mutation will lead to a frameshift which will result in the formation of a truncated FUCA1 protein (p.Val28Cysfs*105) of 132 amino acids approximately one-third the size of the wild type FUCA1 protein (466 amino acids). Both parents were carrying the mutation in a heterozygous state. This study expands the mutational spectrum of the FUCA1 gene associated with fucosidosis and emphasises the benefits of WES for accurate and timely clinical diagnosis of this rare disease.


2021 ◽  
Vol 14 (3) ◽  
pp. 235
Author(s):  
Jen-Sheng Pei ◽  
Chao-Chun Chen ◽  
Wen-Shin Chang ◽  
Yun-Chi Wang ◽  
Jaw-Chyun Chen ◽  
...  

The purpose of our study was to investigate whether genetic variations in lncRNA H19 were associated with susceptibility to childhood leukemia. Two hundred and sixty-six childhood leukemia patients and 266 healthy controls were enrolled in Taiwan, and two single nucleotide polymorphisms (SNPs), rs2839698 and rs217727, in H19 were genotyped and analyzed. There was a significant difference in the genotypic distribution of rs2839698 between patients and healthy controls (p = 0.0277). Compared to the wild-type CC genotype, the heterozygous variant CT and homozygous variant TT genotypes were associated with significantly increased risks of childhood leukemia with an adjusted odd ratio (OR) of 1.46 (95% confidence interval (CI), 1.08–2.14, p = 0.0429) and 1.94 (95%CI, 1.15–3.31, p = 0.0169), respectively (pfor tread = 0.0277). The difference in allelic frequencies between childhood leukemia patients and controls was also significant (T versus C, adjusted OR = 1.53, 95%CI, 1.13–1.79, p = 0.0077). There were no significant differences in the genotypic and allelic distributions of rs217727 between cases and controls. Interestingly, the average level of H19 rs2839698 was statistically significantly higher for patients with CT and TT genotypes than from those with the CC genotype (p < 0.0001). Our results indicate that H19 SNP rs2839698, but not rs217727, may serve as a novel susceptibility marker for childhood leukemia.


1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189 ◽  
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


Author(s):  
Oriana Kreutzfeld ◽  
Stephanie A. Rasmussen ◽  
Aarti A. Ramanathan ◽  
Patrick K. Tumwebaze ◽  
Oswald Byaruhanga ◽  
...  

Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda from 2016-2019. Median IC 50 s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many non-synonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%) and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92 and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.


2018 ◽  
Author(s):  
Langevin Mary ◽  
Helena Synkova ◽  
Tereza Jancuskova ◽  
Sona Pekova

ABSTRACTIt has been recognized that the Merle coat pattern is not only a visually interesting feature, but it also exerts an important biological role, in terms of hearing and vision impairments. In 2006, the Merle (M) locus was mapped to the SILV gene with a SINE element in it, and the inserted retroelement was proven causative to the Merle phenotype. Mapping of the M locus was a genetic breakthrough and many breeders started implementing SILV SINE testing in their breeding programs. Unfortunately, the situation turned out complicated as genotypes of Merle tested individuals did not always correspond to expected phenotypes, sometimes with undesired health consequences in offspring. Two variants of SILV SINE, allelic to the wild type sequence, have been described so far - Mc and M.Here we report a significantly larger portfolio of existing Merle alleles (Mc, Mc+, Ma, Ma+, M, Mh) in Merle dogs, which are associated with unique coat color features and stratified health impairment risk. The refinement of allelic identification was made possible by systematic, detailed observation of Merle phenotypes in a cohort of 181 dogs from known Merle breeds, by many breeders worldwide, and the use of advanced molecular technology enabling the discrimination of individual Merle alleles with significantly higher precision than previously available.We also show that mosaicism of Merle alleles is an unexpectedly frequent phenomenon, which was identified in 30 out of 181 (16.6%). dogs in our study group. Importantly, not only major alleles, but also minor Merle alleles can be inherited by the offspring. Thus, mosaic findings cannot be neglected and must be reported to the breeder in their whole extent.In light of negative health consequences that may be attributed to certain Merle breeding strategies, we strongly advocate implementation of the refined Merle allele testing for all dogs of Merle breeds to help the breeders in selection of suitable mating partners and production of healthy offspring.


Sign in / Sign up

Export Citation Format

Share Document