scholarly journals tsRBase: a comprehensive database for expression and function of tsRNAs in multiple species

2020 ◽  
Vol 49 (D1) ◽  
pp. D1038-D1045
Author(s):  
Yuanli Zuo ◽  
Lei Zhu ◽  
Zhixin Guo ◽  
Wenrong Liu ◽  
Jiting Zhang ◽  
...  

Abstract tRNA-derived small RNAs (tsRNAs) are a class of novel small RNAs, ubiquitously present in prokaryotes and eukaryotes. It has been reported that tsRNAs exhibit spatiotemporal expression patterns and can function as regulatory molecules in many biological processes. Current tsRNA databases only cover limited organisms and ignore tsRNA functional characteristics. Thus, integrating more relevant tsRNA information is helpful for further exploration. Here, we present a tsRNA database, named tsRBase, which integrates the expression pattern and functional information of tsRNAs in multiple species. In tsRBase, we identified 121 942 tsRNAs by analyzing more than 14 000 publicly available small RNA-seq data covering 20 species. This database collects samples from different tissues/cell-lines, or under different treatments and genetic backgrounds, thus helps depict specific expression patterns of tsRNAs under different conditions. Importantly, to enrich our understanding of biological significance, we collected tsRNAs experimentally validated from published literatures, obtained protein-binding tsRNAs from CLIP/RIP-seq data, and identified targets of tsRNAs from CLASH and CLEAR-CLIP data. Taken together, tsRBase is the most comprehensive and systematic tsRNA repository, exhibiting all-inclusive information of tsRNAs from diverse data sources of multiple species. tsRBase is freely available at http://www.tsrbase.org.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ryan J Kast ◽  
Alexandra L Lanjewar ◽  
Colton D Smith ◽  
Pat Levitt

The expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.


2019 ◽  
Author(s):  
Ryan J Kast ◽  
Alexandra L Lanjewar ◽  
Colton D Smith ◽  
Pat Levitt

AbstractThe expression patterns of the transcription factor FOXP2 in the developing mammalian forebrain have been described, and some studies have tested the role of this protein in the development and function of specific forebrain circuits by diverse methods and in multiple species. Clinically, mutations in FOXP2 are associated with severe developmental speech disturbances, and molecular studies indicate that impairment of Foxp2 may lead to dysregulation of genes involved in forebrain histogenesis. Here, anatomical and molecular phenotypes of the cortical neuron populations that express FOXP2 were characterized in mice. Additionally, Foxp2 was removed from the developing mouse cortex at different prenatal ages using two Cre-recombinase driver lines. Detailed molecular and circuit analyses were undertaken to identify potential disruptions of development. Surprisingly, the results demonstrate that Foxp2 function is not required for many functions that it has been proposed to regulate, and therefore plays a more limited role in cortical development than previously thought.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1465
Author(s):  
Ramon de Koning ◽  
Raphaël Kiekens ◽  
Mary Esther Muyoka Toili ◽  
Geert Angenon

Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Inés González-Castellano ◽  
Chiara Manfrin ◽  
Alberto Pallavicini ◽  
Andrés Martínez-Lage

Abstract Background The common littoral shrimp Palaemon serratus is an economically important decapod resource in some European communities. Aquaculture practices prevent the genetic deterioration of wild stocks caused by overfishing and at the same time enhance the production. The biotechnological manipulation of sex-related genes has the proved potential to improve the aquaculture production but the scarcity of genomic data about P. serratus hinders these applications. RNA-Seq analysis has been performed on ovary and testis samples to generate a reference gonadal transcriptome. Differential expression analyses were conducted between three ovary and three testis samples sequenced by Illumina HiSeq 4000 PE100 to reveal sex-related genes with sex-biased or sex-specific expression patterns. Results A total of 224.5 and 281.1 million paired-end reads were produced from ovary and testis samples, respectively. De novo assembly of ovary and testis trimmed reads yielded a transcriptome with 39,186 transcripts. The 29.57% of the transcriptome retrieved at least one annotation and 11,087 differentially expressed genes (DEGs) were detected between ovary and testis replicates. Six thousand two hundred seven genes were up-regulated in ovaries meanwhile 4880 genes were up-regulated in testes. Candidate genes to be involved in sexual development and gonadal development processes were retrieved from the transcriptome. These sex-related genes were discussed taking into account whether they were up-regulated in ovary, up-regulated in testis or not differentially expressed between gonads and in the framework of previous findings in other crustacean species. Conclusions This is the first transcriptome analysis of P. serratus gonads using RNA-Seq technology. Interesting findings about sex-related genes from an evolutionary perspective (such as Dmrt1) and for putative future aquaculture applications (Iag or vitellogenesis genes) are reported here. We provide a valuable dataset that will facilitate further research into the reproductive biology of this shrimp.


Author(s):  
Marine Lambert ◽  
Abderrahim Benmoussa ◽  
Patrick Provost

The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will discuss about the biogenesis and function of small non-coding RNAs derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs), and their potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences—because of their overabundance—from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because we could not believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.


2019 ◽  
Vol 10 (4) ◽  
pp. 711-721 ◽  
Author(s):  
Lin Zhang ◽  
Ting Chen ◽  
Yulong Yin ◽  
Chen-Yu Zhang ◽  
Yong-Liang Zhang

ABSTRACT MicroRNAs are a class of small RNAs that play essential roles in various biological processes by silencing genes. Evidence emerging in recent years suggests that microRNAs in food can be absorbed into the circulatory system and organs of humans and other animals, where they regulate gene expression and biological processes. These food-derived dietary microRNAs may serve as a novel functional component of food, a role that has been neglected to date. However, a significant amount of evidence challenges this new concept. The absorption, stability, and physiological effects of dietary microRNA in recipients, especially in mammals, are currently under heavy debate. In this review, we summarize our current understanding of the unique characteristics of dietary microRNAs and concerns about both the mechanistic and methodological basis for studying the biological significance of dietary microRNAs. Such efforts will benefit continuing investigations and offer new perspectives for the interpretation of the roles of dietary microRNA with respect to the health and disease of humans and animals.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qianxia Yu ◽  
Xueyi Tian ◽  
Canjia Lin ◽  
Chelsea D. Specht ◽  
Jingping Liao

The asymmetric flower, lacking any plane of symmetry, is rare among angiosperms. Canna indica L. has conspicuously asymmetric flowers resulting from the presence of a half-fertile stamen, while the other androecial members develop as petaloid staminodes or abort early during development. The molecular basis of the asymmetric distribution of fertility and petaloidy in the androecial whorls remains unknown. Ontogenetic studies have shown that Canna flowers are borne on monochasial (cincinnus) partial florescences within a racemose inflorescence, with floral asymmetry likely corresponding to the inflorescence architecture. Given the hypothesized role of CYC/TB1 genes in establishing floral symmetry in response to the influence of the underlying inflorescence architecture, the spatiotemporal expression patterns of three Canna CYC/TB1 homologs (CiTBL1a, CiTBL1b-1, and CiTBL1b-2) were analyzed during inflorescence and floral development using RNA in situ hybridization and qRT-PCR. In the young inflorescence, both CiTBL1a and CiTBL1b-1 were found to be expressed in the bracts and at the base of the lateral florescence branches, whereas transcripts of CiTBL1b-2 were mainly detected in flower primordia and inflorescence primordia. During early flower development, expression of CiTBL1a and CiTBL1b-1 were both restricted to the developing sepals and petals. In later flower development, expression of CiTBL1a was reduced to a very low level while CiTBL1b-1 was detected with extremely high expression levels in the petaloid androecial structures including the petaloid staminodes, the labellum, and the petaloid appendage of the fertile stamen. In contrast, expression of CiTBL1b-2 was strongest in the fertile stamen throughout flower development, from early initiation of the stamen primordium to maturity of the ½ anther. Heterologous overexpression of CiTBL genes in Arabidopsis led to dwarf plants with smaller petals and fewer stamens, and altered the symmetry of mature flowers. These data provide evidence for the involvement of CYC/TB1 homologs in the development of the asymmetric Cannaceae flower.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily Berger ◽  
Deniz Yorukoglu ◽  
Lillian Zhang ◽  
Sarah K. Nyquist ◽  
Alex K. Shalek ◽  
...  

Abstract Haplotype reconstruction of distant genetic variants remains an unsolved problem due to the short-read length of common sequencing data. Here, we introduce HapTree-X, a probabilistic framework that utilizes latent long-range information to reconstruct unspecified haplotypes in diploid and polyploid organisms. It introduces the observation that differential allele-specific expression can link genetic variants from the same physical chromosome, thus even enabling using reads that cover only individual variants. We demonstrate HapTree-X’s feasibility on in-house sequenced Genome in a Bottle RNA-seq and various whole exome, genome, and 10X Genomics datasets. HapTree-X produces more complete phases (up to 25%), even in clinically important genes, and phases more variants than other methods while maintaining similar or higher accuracy and being up to 10×  faster than other tools. The advantage of HapTree-X’s ability to use multiple lines of evidence, as well as to phase polyploid genomes in a single integrative framework, substantially grows as the amount of diverse data increases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Garth R. Ilsley ◽  
Ritsuko Suyama ◽  
Takeshi Noda ◽  
Nori Satoh ◽  
Nicholas M. Luscombe

2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


Sign in / Sign up

Export Citation Format

Share Document