scholarly journals P0975EFFECT OF REGULATED INTRAMEMBRANE PROTEOLYSIS ON MEGALIN EXPRESSION DURING OXIDATIVE STRESS EXPOSURE

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yoshifumi Kurosaki ◽  
Futoshi Ikarashi ◽  
Akemi Imoto ◽  
Fumitaka Kawakami ◽  
Masanori Yokoba ◽  
...  

Abstract Background and Aims Megalin, an endocytic receptor in proximal tubular cells, plays a critical role in renal tubular protein reabsorption. We previously reported that oxidative stress induced the temporally increase in renal megalin expression through the PI3K/AKT signaling pathway, but that megalin elevation is normalized or decreased during long term exposure to oxidative stress (hydrogen peroxide). However, the underlying mechanisms are unclear. Studies have addressed that megalin is subjected to regulated intramembrane proteolysis (RIP). Intracellular megalin COOH-terminal fragment (MCTF) is produced by protein kinase C-regulated, metalloprotease-mediated ectodomain shedding and further cleavage by gamma-secretase to produce the soluble megalin intracellular domain (MICD). The MICD in turn translocates to the nucleus where it decreases expression of the Lrp2 gene encoding megalin. In the present study, we evaluated the effect of megalin RIP on the oxidative stress-regulated megalin expression. Method HK-2 cells were cultured with hydrogen peroxide (0.4 mmol/l) for 4.5 or 24 h, followed by treatment with gamma-secretase inhibitor, Compound E (5 mmol/L) or PKC activator, Phorbol 12-myristate 13-acetate (PMA, 0.5 mmol/L). Megalin expression was determined by performing western blotting or real-time PCR. The MCTF in medium was detected by western blotting. In animal experiments, Sprague-Dawley rats were randomly divided into two groups (n = 5): (i) STZ group (diabetic phenotype induced by streptozotocin administration) and (ii) sham group (vehicle). Urine was collected at two weeks after STZ administration, and the excretion of MCTF in urine was analyzed. Results Treatment of HK-2 cells with hydrogen peroxide (0.4 mmol/L) significantly increased megalin protein and mRNA levels at 4.5 h. Pretreatment of Compound E showed further increase in megalin expression in hydrogen peroxide-exposed cells. It was also found that presenilin-1 and -2, which are components of gamma-secretase, double knockdown with siRNA increased megalin expression in hydrogen peroxide treated-cells. On the other hand, PMA treatment inhibited the increase in both megalin protein and mRNA levels. In the cells treated with hydrogen peroxide for 24 h, megalin mRNA levels were normalized, but pretreatment of Compound E kept the elevation in megalin mRNA levels at 24 h after the treatment with hydrogen peroxide. Interestingly, megalin MCTF in the medium was increased by hydrogen peroxide treatment in a dose-dependent manner. Furthermore, megalin MCTF excretion in the urine of STZ-induced diabetes was significantly increased compared to sham rats. Conclusion These results suggested that oxidative stress-induced megalin upregulation was inhibited by RIP activation of megalin, suggesting that megalin RIP plays a role as a negative feedback system to oxidative stress-induced megalin upregulation. Furthermore, our data indicate that oxidative stress induces urinary excretions of MCTF in diabetic rats during the normoalbuminuric stage and potentially act as a marker of diabetic kidney disease.

2020 ◽  
pp. 096032712096076
Author(s):  
D Deng ◽  
J Yan ◽  
Y Wu ◽  
K Wu ◽  
W Li

Previous evidences have indicated that granulosa cells play a critical role in follicular growth. Hydrogen peroxide (H2O2)-induced oxidative stress has been associated with ovarian granulosa cell apoptosis and ovarian function. Recently, a study highlighted the protective role of morroniside against H2O2-induced damage. In this study, we aimed to investigate the effects of morroniside on H2O2-stimulated rat ovarian granulosa cells and its underlying molecular mechanisms. Our results showed that H2O2 treatment suppressed cell survival and increased apoptosis in rat granulosa cells, while treatment with morroniside markedly increased H2O2-induced granulosa cell survival in a dose-dependent manner (0, 10, 50 and 100 µM). Moreover, treatment with 50 µM morroniside impeded H2O2-induced cell apoptosis. An elevation in intracellular ROS, MDA, SOD, GSH-Px, and CAT level was observed in H2O2-induced granulosa cells; however, this effect was abrogated by morroniside treatment. Further studies suggested that administration of morroniside inhibited H2O2-induced granulosa cell apoptosis and caspase-3 activity. In addition, after morroniside treatment of H2O2-stimulated granulosa cells, autophagy-related protein (LC3-II/LC3-I ratio) and beclin-1 expression was decreased and p62 level was increased. Interestingly, we found that morroniside treatment activated the PI3K/AKT/mTOR pathway in H2O2-stimulated granulosa cells. Finally, we showed that treatment with PI3K and mTOR inhibitors reversed the protective effects of morroniside on H2O2-induced granulosa cells. Taken together, our data suggest that treatment with morroniside decreased apoptosis, autophagy, and oxidative stress in rat granulosa cells through the PI3K/AKT/mTOR pathway.


2018 ◽  
Vol 314 (3) ◽  
pp. F462-F470 ◽  
Author(s):  
Yoshifumi Kurosaki ◽  
Akemi Imoto ◽  
Fumitaka Kawakami ◽  
Masanori Yokoba ◽  
Tsuneo Takenaka ◽  
...  

Megalin, an endocytic receptor expressed in proximal tubule cells, plays a critical role in renal tubular protein reabsorption and is associated with the albuminuria observed in diabetic nephropathy. We have previously reported increased oxidant production in the renal cortex during the normoalbuminuric stage of diabetes mellitus (DM); however, the relationship between oxidative stress and renal megalin expression during the normoalbuminuric stage of DM remains unclear. In the present study, we evaluated whether oxidative stress affects megalin expression in the normoalbuminuric stage of DM in a streptozotocin-induced diabetic rat model and in immortalized human proximal tubular cells (HK-2). We demonstrated that increased expression of renal megalin accompanies oxidative stress during the early stage of DM, before albuminuria development. Telmisartan treatment prevented the diabetes-induced elevation in megalin level, possibly through an oxidative stress-dependent mechanism. In HK-2 cells, hydrogen peroxide significantly increased megalin levels in a dose- and time-dependent manner; however, the elevation in megalin expression was decreased following prolonged exposure to severe oxidative stress induced by 0.4 mmol/l hydrogen peroxide. High-glucose treatment also significantly increased megalin expression in HK-2 cells. Concurrent administration of the antioxidant N-acetyl-cysteine blocked the effects of high glucose on megalin expression. Furthermore, the hydrogen peroxide-induced increase in megalin expression was blocked by treatment with phosphatidylinositol 3-kinase and Akt inhibitors. Increase of phosphorylated Akt expression was also seen in the renal cortex of diabetic rats. Taken together, our results indicate that mild oxidative stress increases renal megalin expression through the phosphatidylinositol 3-kinase-Akt pathway in the normoalbuminuric stage of DM.


Author(s):  
JaeSang Ko ◽  
Ji-Young Kim ◽  
Min Kyung Chae ◽  
Eun Jig Lee ◽  
Jin Sook Yoon

We examined endoplasmic reticulum (ER) stress-related gene expression in orbital tissues from patients with Graves’ orbitopathy (GO) and the effects of silencing protein kinase RNA-like endoplasmic reticulum kinase (PERK) in primary orbital fibroblast cultures to demonstrate the therapeutic potential of PERK-modulating agents in GO management. The expression of ER stress related genes in orbital tissue harvested from individuals with or without GO was studied using real-time polymerase chain reaction. The role of PERK in GO pathogenesis was examined through small-interfering RNA (siRNA)-mediated silencing in cultured primary orbital fibroblasts. Intracellular reactive oxygen species (ROS) levels induced in response to cigarette smoke extract (CSE) or hydrogen peroxide were measured using 5-(and 6)-carboxy-20,70-dichlorodihydrofluorescein diacetate staining and flow cytometry. Cells were stained with Oil Red O, and adipogenesis-related transcription factor expression was evaluated through western blotting after adipogenic differentiation. PERK, activating transcription factor 4 (ATF4), and CCAAT-enhancer-binding protein (C/EBP)-homologous protein(CHOP)mRNA levels were significantly higher in GO orbital tissues than in non-GO orbital tissues. PERK silencing inhibited CSE- or hydrogen peroxide-induced ROS generation. After adipogenic differentiation, GO orbital fibroblasts revealed decreased lipid droplets and downregulation of C/EBPα, C/EBPβ, and peroxisome proliferator-activator gamma (PPARγ) in PERK siRNA-transfected cells. The orbital tissues of patients with GO were exposed to chronic ER stress and subsequently exhibited enhanced unfolded protein response (especially through the PERK pathway). PERK silencing reduced oxidative stress and adipogenesis in GO orbital fibroblasts in vitro. Our results imply that PERK-modulating agents can potentially be used to manage GO.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 787
Author(s):  
Enrique García-Pérez ◽  
Dojin Ryu ◽  
Hwa-Young Kim ◽  
Hae Dun Kim ◽  
Hyun Jung Lee

Ochratoxin A (OTA) is a mycotoxin that is potentially carcinogenic to humans. Although its mechanism remains unclear, oxidative stress has been recognized as a plausible cause for the potent renal carcinogenicity observed in experimental animals. The effect of OTA on oxidative stress parameters in two cell lines of LLC-PK1 and HK-2 derived from the kidneys of pig and human, respectively, were investigated and compared. We found that the cytotoxicity of OTA on LLC-PK1 and HK-2 cells was dose- and time-dependent in both cell lines. Furthermore, increased intracellular reactive oxygen species (ROS) induced by OTA in both cell lines were observed in a time-dependent manner. Glutathione (GSH) was depleted by OTA at >48 h in HK-2 but not in LLC-PK1 cells. While the mRNA levels of glucose-6-phosphate dehydrogenase (G6PD) and glutathione peroxidase 1 (GPX1) in LLC-PK1 were down-regulated by 0.67- and 0.66-fold, respectively, those of catalase (CAT), glutathione reductase (GSR), and superoxide dismutase 1 (SOD) in HK-2 were up-regulated by 2.20-, 2.24-, and 2.75-fold, respectively, after 72 h exposure to OTA. Based on these results, we conclude that HK-2 cells are more sensitive to OTA-mediated toxicity than LLC-PK1, and OTA can cause a significant oxidative stress in HK-2 as indicated by changes in the parameter evaluated.


2020 ◽  
Author(s):  
Ramona Meanti ◽  
Laura Rizzi ◽  
Elena Bresciani ◽  
Laura Molteni ◽  
Vittorio Locatelli ◽  
...  

AbstractHexarelin, a synthetic hexapeptide, protects cardiac and skeletal muscles by inhibiting apoptosis, both in vitro and in vivo. Moreover, evidence suggests that hexarelin could have important neuroprotective bioactivity.Oxidative stress and the generation of free radicals has been implicated in the etiologies of several neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and multiple sclerosis. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance the formation of other reactive oxygen species.The aim of this study was to examine the inhibitory influence of hexarelin on H2O2-induced apoptosis in Neuro-2A cells, a mouse neuroblastoma cell line. Our results indicate that H2O2 reduced the viability of Neuro-2A cells in a dose-related fashion. Furthermore, H2O2 induced significant changes in the morphology of Neuro-2A cells, reflected in the formation of apoptotic cell bodies, and an increase of nitric oxide (NO) production. Hexarelin effectively antagonized H2O2 oxidative damage to Neuro-2A cells as indicated by improved cell viability, normal morphology and reduced nitrite (NO2−) release. Hexarelin treatment of Neuro-2A cells also reduced mRNA levels of caspases−3 and −7 and those of the pro-apoptotic molecule Bax; by contrast, hexarelin treatment increased anti-apoptotic Bcl-2 mRNA levels. Hexarelin also reduced MAPKs phosphorylation induced by H2O2 and concurrently increased p-Akt protein expression.In conclusion, our results identify several neuroprotective and anti-apoptotic effects of hexarelin. These properties suggest that further investigation of hexarelin as a neuroprotective agent in an investigational and therapeutic context are merited.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 380 ◽  
Author(s):  
Huang ◽  
Chang ◽  
Chau ◽  
Chiu

Hispidin, a polyphenol compound isolated from Phellinus linteus, has been reported to possess antioxidant activities. In this study, we aimed to investigate the mechanisms underlying the protective effect of hispidin against hydrogen peroxide (H2O2)-induced oxidative stress on Adult Retinal Pigment Epithelial cell line-19 (ARPE-19) cells. Hispidin was not cytotoxic to ARPE-19 cells at concentrations of less than 50 μM. The levels of intracellular reactive oxygen species (ROS) were analyzed by dichlorofluorescin diacetate (DCFDA) staining. Hispidin significantly restored H2O2-induced cell death and reduced the levels of intracellular ROS. The expression levels of antioxidant enzymes, such as NAD(P)H:Quinine oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM) were examined using real-time PCR and Western blotting. Our results showed that hispidin markedly enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, NQO-1, GCLM, and GCLC in a dose-dependent manner. Furthermore, knockdown experiments revealed that transfection with Nrf2 siRNA successfully suppresses the hispidin activated Nrf2 signaling in ARPE-19 cells. Moreover, activation of the c-Jun N-terminal kinase (JNK) pathway is involved in mediating the protective effects of hispidin on the ARPE-19 cells. Thus, the present study demonstrated that hispidin provides protection against H2O2-induced damage in ARPE-19 cells via activation of Nrf2 signaling and up-regulation of its downstream targets, including Phase II enzymes, which might be associated with the activation of the JNK pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Chitra Basu ◽  
Runa Sur

Hydrogen peroxide (H2O2) mediated oxidative stress leading to hepatocyte apoptosis plays a pivotal role in the pathophysiology of several chronic liver diseases. This study demonstrates that S-allyl cysteine (SAC) renders cytoprotective effects on H2O2 induced oxidative damage and apoptosis in HepG2 cells. Cell viability assay showed that SAC protected HepG2 cells from H2O2 induced cytotoxicity. Further, SAC treatment dose dependently inhibited H2O2 induced apoptosis via decreasing the Bax/Bcl-2 ratio, restoring mitochondrial membrane potential (∆Ψm), inhibiting mitochondrial cytochrome c release, and inhibiting proteolytic cleavage of caspase-3. SAC protected cells from H2O2 induced oxidative damage by inhibiting reactive oxygen species accumulation and lipid peroxidation. The mechanism underlying the antiapoptotic and antioxidative role of SAC is the induction of the heme oxygenase-1 (HO-1) gene in an NF-E2-related factor-2 (Nrf-2) and Akt dependent manner. Specifically SAC was found to induce the phosphorylation of Akt and enhance the nuclear localization of Nrf-2 in cells. Our results were further confirmed by specific HO-1 gene knockdown studies which clearly demonstrated that HO-1 induction indeed played a key role in SAC mediated inhibition of apoptosis and ROS production in HepG2 cells, thus suggesting a hepatoprotective role of SAC in combating oxidative stress mediated liver diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 643 ◽  
Author(s):  
Junrui Cheng ◽  
Baxter Miller ◽  
Emilio Balbuena ◽  
Abdulkerim Eroglu

Background: Oxidative stress plays a critical role in lung cancer progression. Carotenoids are efficient antioxidants. The objective of this study was to explore the efficacy of all-trans retinoic acid (ATRA) and carotenoids in cigarette smoke-induced oxidative stress within A549 human lung cancer epithelial cells. Methods: A549 cells were pretreated with 1-nM, 10-nM, 100-nM, 1-μM and 10-μM ATRA, β-carotene (BC) and lycopene for 24 h, followed by exposure to cigarette smoke using a smoking chamber. Results: The OxyBlot analysis showed that smoking significantly increased oxidative stress, which was inhibited by lycopene at 1 nM and 10 nM (p < 0.05). In the cells exposed to smoke, lycopene increased 8-oxoguanine DNA glycosylase (OGG1) expression at 1 nM, 10 nM, 100 nM, and 1 μM (p < 0.05), but not at 10 μM. Lycopene at lower doses also improved Nei like DNA glycosylases (NEIL1, NEIL2, NEIL3), and connexin-43 (Cx43) protein levels (p < 0.05). Interestingly, lycopene at lower concentrations promoted OGG1 expression within the cells exposed to smoke to an even greater extent than the cells not exposed to smoke (p < 0.01). This may be attributed to the increased SR-B1 mRNA levels with cigarette smoke exposure (p < 0.05). Conclusions: Lycopene treatment at a lower dosage could inhibit smoke-induced oxidative stress and promote genome stability. These novel findings will shed light on the molecular mechanism of lycopene action against lung cancer.


Zygote ◽  
2019 ◽  
Vol 27 (3) ◽  
pp. 118-125 ◽  
Author(s):  
Wei Peng ◽  
Mengtong Lei ◽  
Jun Zhang ◽  
Yong Zhang

SummaryMelatonin plays a critical role in several types of cells as an antioxidant to protect intracellular molecules from oxidative stress. The anti-oxidation effect of melatonin in yak embryos is largely unknown. We report that melatonin can protect the development of yak preimplantation embryos against oxidative stress induced by hydrogen peroxide (H2O2). Therefore, the quality of blastocysts developed from zygotes exposed to H2O2 was promoted. In addition, we observed that melatonin reduced H2O2-induced intracellular reactive oxygen species (ROS) levels and prevented mitochondrial dysfunction in zygotes. These phenomena revealed the effective antioxidant activity of melatonin to prevent oxidative stress in yak embryos. To determine the underlying mechanism, we further demonstrated that melatonin protected preimplantation embryos from oxidative damage by preserving antioxidative enzymes. Collectively, these results confirmed the anti-oxidation effect of melatonin in yak embryos that significantly improved the quantity and quality of blastocysts in the in vitro production of embryos in yaks.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mao-Chun Xu ◽  
Xiu-Fang Gao ◽  
Changwu Ruan ◽  
Zhi-Ru Ge ◽  
Ji-De Lu ◽  
...  

Oxidative stress plays a critical role in cardiovascular diseases. Salidroside, a glycoside fromRhodiola rosea, has been used as an antioxidative therapy for oxidative injury in cardiac diseases. However, the mechanism underlying its antioxidant effect needs to be elucidated. Treatment of HUVECs with H2O2significantly decreased the expression of miR-103 in a dose- and time-dependent manner, whereas pretreatment with salidroside significantly inhibited this decrease. Subsequent analysis showed that overexpression of miR-103 abrogated cell activity and ROS production induced by H2O2. Bcl2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) was determined to be a novel miR-103 target in HUVECs. Interestingly, H2O2treatment upregulated BNIP3 expression; in turn, this effect was inhibited by pretreatment with salidroside. Further studies confirmed that the knockdown of BNIP3 enhanced cell activity and suppressed the ROS production induced by H2O2. These results demonstrated for the first time that salidroside protects HUVECs in part by upregulating the expression of miR-103, which mediates BNIP3 downregulation and plays an important role in the cytoprotective actions.


Sign in / Sign up

Export Citation Format

Share Document