scholarly journals EPEN-01. C11ORF95-RELA DICTATES ONCOGENIC TRANSCRIPTIONAL PROGRAMS TO DRIVE AGGRESSIVE SUPRATENTORIAL EPENDYMOMA

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i13-i13
Author(s):  
Amir Arabzade ◽  
Yanhua Zhao ◽  
Srinidhi Varadharajan ◽  
Hsiao-Chi Chen ◽  
Kelsey Bertrand ◽  
...  

Abstract Over 60% of supratentorial (ST) ependymomas harbor a gene fusion between C11orf95, an uncharacterized gene, and RELA (also known as p65), a main component of the NF-ĸB family of transcription factors. While its sufficiency to drive tumor has been established, the mechanism of tumorigenesis remains elusive. To tackle this question, we developed a natively forming mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain and performed integrative epigenomic and transcriptomic mapping. Our findings indicate that in addition to direct canonical NF-ĸB pathway activation, C11orf95-RELA (CRfus) dictates a neoplastic transcriptional program and binds to unique sites across the genome enriched with Plagl family transcription factor motifs. CRfus modulates the transcriptional landscape by recruiting transcription co-activators (Brd4, EP300, Cbp, Pol2) which are amenable to pharmacologic inhibition. Downstream CRfus target genes converge on developmental programs marked by Plagl family of transcription factors and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks, many of which contain previously unreported therapeutic leads in C11orf95-RELA ependymoma.

1992 ◽  
Vol 12 (12) ◽  
pp. 5508-5515 ◽  
Author(s):  
T Oehler ◽  
P Angel

The ability of the c-Jun protein, the main component of the transcription factor AP1, to interact directly or indirectly with the RNA polymerase II-initiation complex to activate transcription was investigated by in vivo transcription interference ("squelching") experiments. Coexpression of a Jun mutant lacking its DNA binding domain strongly represses the activity of wild-type c-Jun. Repression depends on the presence of the transactivation domains (TADs), suggesting that a limiting factor interacting with the TADs is essential to link Jun and the components of the transcriptional machinery. The activity of this intermediary factor(s) is restricted to TADs characterized by an abundance of negatively charged amino acids, as demonstrated by the abilities of the TADs of JunB, GAL4, and VP16 to repress c-Jun activity. Depending on the presence of the TADs of Jun, we found physical interaction between Jun and a cluster of three proteins with molecular masses of 52, 53, and 54 kDa (p52/54). Association between Jun and p52/54 is strongly reduced in the presence of VP16, suggesting that the two proteins compete for binding to p52/54. Transcription factors containing a different type of TAD (e.g., GHF1, estrogen receptor, or serum response factor) fail to inhibit Jun activity, suggesting that these proteins act through a different mechanism. We consider the requirement of Jun to interact with p52/54 utilized by other transcription factors a new mechanism in the regulation of transcription of Jun-dependent target genes.


1992 ◽  
Vol 12 (12) ◽  
pp. 5508-5515
Author(s):  
T Oehler ◽  
P Angel

The ability of the c-Jun protein, the main component of the transcription factor AP1, to interact directly or indirectly with the RNA polymerase II-initiation complex to activate transcription was investigated by in vivo transcription interference ("squelching") experiments. Coexpression of a Jun mutant lacking its DNA binding domain strongly represses the activity of wild-type c-Jun. Repression depends on the presence of the transactivation domains (TADs), suggesting that a limiting factor interacting with the TADs is essential to link Jun and the components of the transcriptional machinery. The activity of this intermediary factor(s) is restricted to TADs characterized by an abundance of negatively charged amino acids, as demonstrated by the abilities of the TADs of JunB, GAL4, and VP16 to repress c-Jun activity. Depending on the presence of the TADs of Jun, we found physical interaction between Jun and a cluster of three proteins with molecular masses of 52, 53, and 54 kDa (p52/54). Association between Jun and p52/54 is strongly reduced in the presence of VP16, suggesting that the two proteins compete for binding to p52/54. Transcription factors containing a different type of TAD (e.g., GHF1, estrogen receptor, or serum response factor) fail to inhibit Jun activity, suggesting that these proteins act through a different mechanism. We consider the requirement of Jun to interact with p52/54 utilized by other transcription factors a new mechanism in the regulation of transcription of Jun-dependent target genes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


2021 ◽  
Vol 22 (11) ◽  
pp. 5968
Author(s):  
Egor A. Turovsky ◽  
Maria V. Turovskaya ◽  
Evgeniya I. Fedotova ◽  
Alexey A. Babaev ◽  
Viktor S. Tarabykin ◽  
...  

Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca2+-signals of neurons in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory system of neurotransmission resulting in the suppression of the neuron maturation process and switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal network in the cortical cell culture.


EBioMedicine ◽  
2021 ◽  
Vol 67 ◽  
pp. 103345
Author(s):  
Ryuhei Okada ◽  
Aki Furusawa ◽  
Daniel W. Vermeer ◽  
Fuyuki Inagaki ◽  
Hiroaki Wakiyama ◽  
...  

Biomedicines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 76 ◽  
Author(s):  
Suresh P. Khadke ◽  
Aniket A. Kuvalekar ◽  
Abhay M. Harsulkar ◽  
Nitin Mantri

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by impaired insulin action and its secretion. The objectives of the present study were to establish an economical and efficient animal model, mimicking pathophysiology of human T2DM to understand probable molecular mechanisms in context with lipid metabolism. In the present study, male Wistar rats were randomly divided into three groups. Animals were fed with high fat diet (HFD) except healthy control (HC) for 12 weeks. After eight weeks, intra peritoneal glucose tolerance test was performed. After confirmation of glucose intolerance, diabetic control (DC) group was injected with streptozotocin (STZ) (35 mg/kg b.w., i.p.). HFD fed rats showed increase (p ≤ 0.001) in glucose tolerance and HOMA-IR as compared to HC. Diabetes rats showed abnormal (p ≤ 0.001) lipid profile as compared to HC. The hepatocyte expression of transcription factors SREBP-1c and NFκβ, and their target genes were found to be upregulated, while PPAR-γ, CPT1A and FABP expressions were downregulated as compared to the HC. A number of animal models have been raised for studying T2DM, but the study has been restricted to only the biochemical level. The model is validated at biochemical, molecular and histopathological levels, which can be used for screening new therapeutics for the effective management of T2DM.


Radiology ◽  
2003 ◽  
Vol 228 (2) ◽  
pp. 560-568 ◽  
Author(s):  
Samira Guccione ◽  
Yi-Shan Yang ◽  
Gongyi Shi ◽  
Daniel Y. Lee ◽  
King C. P. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document