EXTH-21. MECHANISMS OF SYNERGISTIC GROWTH SUPPRESSION BY RADIOTHERAPY AND C-MET INHIBITION IN EXPERIMENTAL GLIOBLASTOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi167-vi168
Author(s):  
Manuela Silginer ◽  
Eleanna Papa ◽  
Emese Szabo ◽  
Flavio Vasella ◽  
Patrick Roth ◽  
...  

Abstract Glioblastoma remains to be one of the most lethal solid cancers and novel therapies are urgently needed. There is increasing interest in the role of the HGF/MET pathway in the response of glioblastoma to radiotherapy. c-MET-mediated radioresistance may be partially induced via proinvasive and DNA damageresponse pathways and HGF may be involved in the regulation of immune responses. Here, we explored the role of the c-MET pathway in response to radiotherapy and investigated potential modes of action that mediate synergistic effects of MET pathway inhibition and irradiation in syngeneic murine glioma models in vitro and in vivo. Murine glioma cells express HGF and c-MET and respond with c-MET phosphorylation upon exposure to exogenous HGF. In vitro, glioma cell viability and proliferation are not affected by pharmacological or genetic c-MET pathway interference, and the c-MET inhibitor tepotinib fails to sensitize glioma cells to irradiation. Conversely, in vivo c-MET inhibition combined with focal radiotherapy synergistically prolongs survival in two syngeneic orthotopic glioma models compared with either treatment alone. Complementary studies demonstrated that synergy was lost when gliomas were established and treated in immunodeficient mice, and importantly, also when c-MET gene expression was disrupted in the tumor. Thus, synergistic suppression of experimental syngeneic glioma growth by irradiation and c-MET inhibition requires at least two mechanisms, expression of c-MET in the tumor and a functional immune system. In summary, our data suggest clinical evaluation of c-MET pathway inhibition in combination with radiotherapy in human glioblastoma.

Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


2005 ◽  
Vol 64 (6) ◽  
pp. 523-528 ◽  
Author(s):  
Jörg Wischhusen ◽  
Manuel A. Friese ◽  
Michel Mittelbronn ◽  
Richard Meyermann ◽  
Michael Weller

Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Beatriz Escudero-Pérez ◽  
César Muñoz-Fontela

Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shuang Wang ◽  
Xueyang Zou ◽  
Yi Zhang ◽  
Xiaoya Wang ◽  
Wei Yang ◽  
...  

Regulatory T cells (Tregs), as an important subset of T cells, play an important role in maintaining body homeostasis by regulating immune responses and preventing autoimmune diseases. In-depth research finds that Tregs have strong instability and plasticity, and according to their developmental origin, Tregs can be classified into thymic-derived Tregs (tTregs), endogenous-induced Tregs (pTregs), which are produced by antigen-stimulated T cells in the periphery in vivo, and induced Tregs (iTregs), which differentiate from naïve T cells in vitro. In recent years, studies have found that Tregs are divided into lymphatic and tissue-resident Tregs according to their location. Research on the generation and function of lymphoid Tregs has been more comprehensive and thorough, but the role of tissue Tregs is still in the exploratory stage, and it has become a research hot spot. In this review, we discuss the instability and plasticity of Tregs and the latest developments of tissue-resident Tregs in the field of biology, including adipose tissue, colon, skeletal muscle, and other Tregs that have been recently discovered as well as their production, regulation, and function in specific tissues and their role in the pathogenesis of autoimmune diseases.


2003 ◽  
Vol 124 (4) ◽  
pp. A335
Author(s):  
Stefan J. Wirtz ◽  
Christoph Becker ◽  
Edward E.S. Nieuwenhuis ◽  
Mark Birkenbach ◽  
Richard S. Blumberg ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382110119
Author(s):  
Haopeng Wang ◽  
Mengyuan Yin ◽  
Lei Ye ◽  
Peng Gao ◽  
Xiang Mao ◽  
...  

The prognosis of glioma is significantly correlated with the pathological grades; however, the correlations between the prognostic biomarkers with pathological grades have not been elucidated. S100A11 is involved in a variety of malignant biological processes of tumor, whereas its biological and clinicopathological features on glioma remain unclear. In this study, the S100A11 expression and clinical information were obtained from the public databases (TCGA, GEPIA2) to analyze its correlations with the pathological grade and the prognosis of glioma patients. We then verified the expression of S100A11 by immunohistochemistry staining. The effects of S100A11 on the proliferation of glioma cells were confirmed by cytological function assays (CCK-8, Flow cytometry, Clone formation assay) in vitro, the role of S100A11 in regulation of glioma growth was determined by xenograft model assay. We observed that S100A11 expression positively correlated with the pathological grades, while negatively correlated with the survival time of patients. In cytological analysis, we found the proliferations of glioma cell lines were significantly inhibited in vitro ( P < 0.05) after interfering S100A11 expression via shRNAs. The cell cycle was blocked at G0/G1 stage. The ability of clone formation was significantly decreased, and the tumorigenicity in vivo was weakened ( P < 0.05). In summary, S100A11 was over-expressed in gliomas and positively correlated with the pathological grades. Interfering the expression of S100A11 significantly inhibited the proliferation of glioma in vitro and the tumorigenicity in vivo ( P < 0.05). In conclusion, S100A11 might be considered as a potential biomarker in glioma.


2018 ◽  
Author(s):  
Razvan C. Stan ◽  
Katia S. Françoso ◽  
Rubens P.S. Alves ◽  
Luís Carlos S. Ferreira ◽  
Irene S. Soares ◽  
...  

AbstractFever is a regulated elevation in the body setpoint temperature and may arise as a result of infectious and noninfectious causes. While beneficial in modulating immune responses to infection, the potential of febrile temperatures in regulating antigen binding affinity to antibodies has not been explored. We have investigated this process under in vitro conditions using selected malaria or dengue antigens and specific monoclonal antibodies, and observed a marked increase in the affinity of these antibody-antigen complexes at 40°C, compared to physiological (37°C) or pathophysiological temperatures (42°C). Induced thermal equilibration of the protein partners at these temperatures, prior to measurements, further increased their binding affinity. These results may indicate an unexpected beneficial and adaptive role for fever in vivo, and highlight the positive role of thermal priming in enhancing protein-protein affinity for samples of scarce availability.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qinglin Li ◽  
Liang Xia ◽  
Caixing Sun ◽  
Huangjie Zhang ◽  
Mengying Zheng ◽  
...  

Glioma is the common primary craniocerebral malignancy with unfavorable prognosis. It is currently treated by surgical resection supplemented by radiotherapy, although the resistance of glioma cells to radiation limits the therapeutic outcomes. The aim of the present study was to determine the potential radiosensitizing effects of borneol and the underlying mechanisms. We found that borneol administration along with radiotherapy significantly inhibited the growth of primary glioma cells in vitro and in vivo. Furthermore, borneol markedly increased the number of autophagosomes in the glioma cells, which coincided with increased expression of beclin-1 and LC3. And the combination of borneol and radiation exposure significantly decreased the expression levels of HIF-1α, mTORC1 and eIF4E. In addition, silencing mTORC1 and eIF4E upregulated Beclin-1 and LC3 and decreased the expression of HIF-1α, thereby inhibiting tumor cell proliferation. Our findings suggest that borneol sensitizes glioma cells to radiation by inducing autophagy via inhibition of the mTORC1/eIF4E/HIF-1α regulatory axis.


2020 ◽  
Vol 218 (1) ◽  
Author(s):  
Fares Bassil ◽  
Emily S. Meymand ◽  
Hannah J. Brown ◽  
Hong Xu ◽  
Timothy O. Cox ◽  
...  

α-Synuclein (α-syn) and tau aggregates are the neuropathological hallmarks of Parkinson’s disease (PD) and Alzheimer’s disease (AD), respectively, although both pathologies co-occur in patients with these diseases, suggesting possible crosstalk between them. To elucidate the interactions of pathological α-syn and tau, we sought to model these interactions. We show that increased accumulation of tau aggregates occur following simultaneous introduction of α-syn mousepreformed fibrils (mpffs) and AD lysate–derived tau seeds (AD-tau) both in vitro and in vivo. Interestingly, the absence of endogenous mouse α-syn in mice reduces the accumulation and spreading of tau, while the absence of tau did not affect the seeding or spreading capacity of α-syn. These in vivo results are consistent with our in vitro data wherein the presence of tau has no synergistic effects on α-syn. Our results point to the important role of α-syn as a modulator of tau pathology burden and spreading in the brains of AD, PDD, and DLB patients.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi37-vi38
Author(s):  
Clara Quijano-Rubio ◽  
Michael Weller

Abstract CD95 is a transmembrane receptor with potential to promote both cell death and growth. Initially described to trigger apoptosis upon ligand (CD95L) engagement, CD95 may also prompt cell proliferation, invasion and stemness. CD95 stimulation to induce cancer cell apoptosis has been proved clinically impracticable. However, in tumors expressing both CD95 and CD95L, strategically inhibiting CD95-CD95L interactions to simultaneously block cancer cell growth and apoptotic cell death in tumor microenvironment components, including CD95-expressing antitumor immune effector cells, may represent an alternative therapeutic strategy. Here we characterized the expression of CD95 and CD95L in murine glioma models in vitro and in vivo. To fully disrupt CD95-CD95L interactions, we deleted Cd95 or Cd95l by CRISPR-Cas9-mediated knockout (KO) and assessed the consequences on cell growth and tumorigenicity in immunocompetent and immunocompromised mice. CD95 expression was identified in selected murine glioma cell lines. In vitro, expression of the canonical, membrane-bound, form of CD95L was not detected but cell lines expressed a shorter non-canonical, soluble, Cd95l variant. Tumors generated upon implantation of the same cells in vivo expressed both Cd95l variants. Upon Cd95l KO, all investigated cell lines exhibited reduced growth in vitro. Cell growth reduction upon Cd95 KO in SMA-497 murine glioma cells was rescued upon Cd95 re-transfection, validating CD95 specificity of the phenotype. Cd95-overexpression in Cd95-expressing cells did not increase growth. In vivo, Cd95 or Cd95l KO cell implantation in syngeneic mice generated smaller tumors than wildtype cells, resulting in prolonged survival. While 40% Cd95l KO cell-implanted immunocompetent mice did not develop tumors, all immunodeficient mice did. Altogether, these data reveal a growth-promoting role of non-canonical CD95L-CD95 interactions in murine gliomas, which blockade through gene KO results in decreased tumorigenicity. Furthermore, our data suggest the contribution of CD95L-mediated immunosuppression to the reduction of Cd95l KO-associated tumorigenicity.


Sign in / Sign up

Export Citation Format

Share Document