Bacterial Diversity in Freshwater

Ecology ◽  
2017 ◽  
Author(s):  
Eva S. Lindström

The tree of life, describing the evolutionary relationships among organisms, is totally dominated by bacteria. In a regular ecology textbook, the number of bacterial and Archaeal examples are, however, few. Microorganisms are in many respects understudied, and we do not yet know if they follow similar “rules” as other organisms: for instance, regarding patterns in diversity over time and space. Further, bacteria play important roles in biogeochemical cycles, and therefore it is also important to understand if and how this enormous diversity is related to the role bacteria play in ecosystems. Despite methodological developments (see Historical Overview and Methods) that led to an exponential increase in the amount of data over time, we are still only scratching the surface of the diversity of freshwater bacteria (see Measuring Alpha Diversity), and few general patterns in diversity have emerged. Some typical freshwater bacterial groups have been identified (see Marine and Freshwater Bacterioplankton and Typical Freshwater Bacteria) and some important environmental steering factors are known (see Biogeography of Freshwater Bacteria). Further, a consistent pattern appears to be that alpha diversity decreases along lake and river chains because of inoculation of bacteria from species-rich soils (see Patterns in Alpha Diversity). Some findings of bacterial alpha diversity further indicate that bacterial diversity may not always follow the same rules as in larger organisms, challenging some established textbook “truths” regarding what is influencing diversity in general. But more data is needed for certain conclusions. Future work should also include the identification of the true (active) players and their possible importance for ecosystem functioning (see Identifying Contributors to Community Functioning).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noémie Deldicq ◽  
Dewi Langlet ◽  
Camille Delaeter ◽  
Grégory Beaugrand ◽  
Laurent Seuront ◽  
...  

AbstractHeatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv−1 day−1 (usual temperature) to 0 mm3 indiv−1 day−1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 180
Author(s):  
Negash Kabtimer Bereded ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
Manuel Curto ◽  
Herwig Waidbacher ◽  
...  

The gut microbiota of fishes is known to play an essential role in diverse aspects of host biology. The gut microbiota of fish is affected by various environmental parameters, including temperature changes, salinity and diet. Studies of effect of environment on gut microbiota enables to have a further understanding of what comprises a healthy microbiota under different environmental conditions. However, there is insufficient understanding regarding the effects of sampling season and catching site (wild and aquaculture) on the gut microbiota of Nile tilapia. This study characterised gut microbial composition and diversity from samples collected from Lake Tana and the Bahir Dar aquaculture facility centre using 16S rDNA Illumina MiSeq platform sequencing. Firmicutes and Fusobacteria were the most dominant phyla in the Lake Tana samples, while Proteobacteria was the most dominant in the aquaculture samples. The results of differential abundance testing clearly indicated significant differences for Firmicutes, Fusobacteria, Bacteroidetes and Cyanobacteria across sampling months. However, Proteobacteria, Chloroflexi, Fusobacteria and Cyanobacteria were significantly enriched in the comparison of samples from the Lake Tana and aquaculture centre. Significant differences were observed in microbial diversity across sampling months and between wild and captive Nile tilapia. The alpha diversity clearly showed that samples from the aquaculture centre (captive) had a higher diversity than the wild Nile tilapia samples from Lake Tana. The core gut microbiota of all samples of Nile tilapia used in our study comprised Firmicutes, Proteobacteria and Fusobacteria. This study clearly showed the impact of sampling season and catching site (wild and aquaculture) on the diversity and composition of bacterial communities associated with the gut of Nile tilapia. Overall, this is the first study on the effects of sampling season and catching site on the gut microbiota of Nile tilapia in Ethiopia. Future work is recommended to precisely explain the causes of these changes using large representative samples of Nile tilapia from different lakes and aquaculture farms.


2005 ◽  
Vol 37 (1) ◽  
pp. 125-147
Author(s):  
Bosiljka Djordjevic ◽  
Slavica Maksic

The paper reviews approaches to the development of talents and creativity using surveys communicated in the 1975-2005 period at world, European and regional scientific conferences on gifted children and youth. Methods of studying and treating the gifted over the past three decades were analyzed on the basis of data available in records, proceedings of papers and other publications of the mentioned conferences as well as of personal findings of the present paper?s authors who participated in some of those conferences. In addition to identifying the subjects that captured attention of researchers and practitioners in a certain period of time, an attempt was made to describe trends in studying them and those likely ones for future work. The results indicate that the most frequent subjects under study were problems facing conception and definition of giftedness, talents and creativity, instruments for identifying gifted individuals, and manners of providing adequate education for them. Over time there was an increase in the number of studies related to identifying specific personality traits of a gifted individual and his environment, critical for his development and achievement. It is noticeable that interest in gifted children and youth is growing all the time, involving not only researchers and teachers but parents, the gifted themselves and other important social groups and institutions. It is concluded that encouraging talents and creativity in youth is a challenge to contemporary world, which will determine its future.


2020 ◽  
Vol 110 ◽  
pp. 265-268 ◽  
Author(s):  
Imran Rasul

The frequency and complexity of viral outbreaks is increasing over time. The economic costs of outbreaks are severe; this is not only because of increased morbidity and mortality but also because viral outbreaks--representing aggregate health shocks--can severely restrict social interaction and economic exchange. Such aggregate health shocks lead to behavioral and prevalence responses along many margins. We describe some important response channels, discuss emerging empirical results on these margins from a nascent literature, and stress important avenues for future work.


2012 ◽  
Vol 367 (1605) ◽  
pp. 2998-3007 ◽  
Author(s):  
Gabriel Yvon-Durocher ◽  
Andrew P. Allen

Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change.


2020 ◽  
Vol 21 (13) ◽  
pp. 4608 ◽  
Author(s):  
Guoxia Liu ◽  
Hui-Xian Chong ◽  
Fiona Yi-Li Chung ◽  
Yin Li ◽  
Min-Tze Liong

We have previously reported that the administration of Lactobacillus plantarum DR7 for 12 weeks reduced stress and anxiety in stressed adults as compared to the placebo group, in association with changes along the brain neurotransmitters pathways of serotonin and dopamine-norepinephrine. We now aim to evaluate the effects of DR7 on gut functions, gut microbiota compositional changes, and determine the correlations between microbiota changes and the pathways of brain neurotransmitters. The administration of DR7 prevented an increase of defecation frequency over 12 weeks as compared to the placebo (p = 0.044), modulating the increase of stress-induced bowel movement. Over 12 weeks, alpha diversity of gut microbiota was higher in DR7 than the placebo group across class (p = 0.005) and order (p = 0.018) levels, while beta diversity differed between groups at class and order levels (p < 0.001). Differences in specific bacterial groups were identified, showing consistency at different taxonomic levels that survived multiplicity correction, along the phyla of Bacteroides and Firmicutes and along the classes of Deltaproteobacteria and Actinobacteria. Bacteroidetes, Bacteroidia, and Bacteroidales which were reduced in abundance in the placebo group showed opposing correlation with gene expression of dopamine beta hydrolase (DBH, dopamine pathway; p < 0.001), while Bacteroidia and Bacteroidales showed correlation with tryptophan hydroxylase-II (TPH2, serotonin pathway; p = 0.001). A correlation was observed between DBH and Firmicutes (p = 0.002), Clostridia (p < 0.001), Clostridiales (p = 0.001), Blautia (p < 0.001), and Romboutsia (p < 0.001), which were increased in abundance in the placebo group. Blautia was also associated with TDO (p = 0.001), whereas Romboutsia had an opposing correlation with TPH2 (p < 0.001). Deltaproteobacteria and Desulfovibrionales which were decreased in abundance in the placebo group showed opposing correlation with DBH (p = 0.001), whereas Bilophila was associated with TPH2 (p = 0.001). Our present data showed that physiological changes induced by L. plantarum DR7 could be associated with changes in specific taxa of the gut microbiota along the serotonin and dopamine pathways.


2018 ◽  
Vol 108 ◽  
pp. 323-327 ◽  
Author(s):  
Emanuele Colonnelli ◽  
Joacim Tåg ◽  
Michael Webb ◽  
Stefanie Wolter

We provide stylized facts on the existence and dynamics over time of the large firm wage premium for four countries. We examine matched employer-employee micro-data from Brazil, Germany, Sweden, and the UK, and find that the large firm premium exists in all these countries. However, we uncover substantial differences among them in the evolution of the wage premium over the past several decades. Moreover, we find no clear evidence of common cross-country industry trends. We conclude by discussing potential explanations for this heterogeneity, and proposing some questions for future work in the area.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Anastasia Bragina ◽  
Christian Berg ◽  
Henry Müller ◽  
Daniel Moser ◽  
Gabriele Berg

2021 ◽  
Author(s):  
Katlyn Rose Betway ◽  
Robert D. Hollister ◽  
Jeremy May ◽  
Jacob A. Harris ◽  
William Gould ◽  
...  

The Arctic is warming more than twice the global average. Graminoids, deciduous shrubs, and evergreen shrubs have been shown to increase in cover in some regions, but not others. To better understand why plant response varies across regions, we compared change in cover over time with nine functional traits of twelve dominant species at three regions in northern Alaska (Utqiaġvik, Atqasuk, and Toolik Lake). Cover was measured three times from 2008 to 2018. Repeated measures ANOVA found one species showed a significant change in cover over time; Carex aquatilis increased at Atqasuk by 12.7%. Canonical correspondence analysis suggested a relationship between shifts in species cover and traits, but Pearson and Spearman correlations did not find a significant trend for any trait when analyzed individually. Investigation of community-weighted means (CWM) for each trait revealed no significant changes over time for any trait at any region. Whereas, estimated ecosystem values for several traits important to ecosystem functioning showed consistent increases over time at two regions (Utqiaġvik and Atqasuk). Results thus indicate that vascular plant community composition and function have remained consistent over time; however, documented increases in total plant cover have important implications for ecosystem functioning.


2020 ◽  
Author(s):  
Lei Liu ◽  
Hongmei Qi ◽  
Pengcheng Suo ◽  
Huai Lin ◽  
Siyi Wang ◽  
...  

Abstract Background: Antibiotics are emerging toxic contaminant that have potential public health risk worldwide, which also would cause human intestinal microbial disorder and develop multiple human diseases. However, to date, the combination effects of antibiotics on human intestinal microbiota dysbiosis and related health risk are not fully understood. Moreover, there is limited information on using probiotics or synbiotics for restoration of intestinal microbiome affected by antibiotics. Therefore, this study evaluated the in vitro ability of combined effects of amoxicillin (Amx) and gentamycin (Gen), and the restoration effects of probiotics or synbiotics on ARGs as well as human disease-related pathways in the simulated human gut.Results: This study indicated that the combination exposure of Amx and Gen was confirmed to promote the increase of most ARGs and the disease-related pathways, which may be better restored by probiotics treatment. The results of the alpha diversity of the combined antibiotics exposure or the recovery microbial community showed no difference from the control. However, the beta diversity results indicated their differences, and the ascending colon sample recovered better under natural condition while the descending colon sample recovered better after probiotics treatment. Combination effects on the genetic level might attribute to microbiota shift, which were explained well by the phenomenon that Escherichia/Shigella was positively associated with the ARGs, and Klebsiella and Escherichia/Shigella were positively related to the human disease-related pathways.Conclusion: These results might be valuable to direct the future work and opened up new perspectives to address the direct effects of combine antibiotics on the intestinal microbiota and find a promising strategy to restore the antibiotics associated dysbiosis of gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document