scholarly journals In Vivo Biomarker Analysis of Intranasally Dosed PC945, a Novel Antifungal Agent, in Aspergillus Fumigatus Infection in Immunocompromised Mice

2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Kazuhiro Ito ◽  
Yasuo Kizawa ◽  
Genki Kimura ◽  
Takahiro Nakaoki ◽  
Lindsey Cass ◽  
...  
2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Genki Kimura ◽  
Takahiro Nakaoki ◽  
Thomas Colley ◽  
Garth Rapeport ◽  
Pete Strong ◽  
...  

ABSTRACT PC945 is a novel triazole optimized for lung delivery, and the objective of this study is to determine the effects of intranasally dosed PC945 on Aspergillus fumigatus infection and associated biomarkers in immunocompromised mice. PC945, posaconazole, or voriconazole was administered intranasally once daily on days 0 to 3 (early intervention) or days 1 to 3 (late intervention) postinfection in temporarily neutropenic A/J mice infected intranasally with A. fumigatus, and bronchoalveolar lavage fluid (BALF) and serum were collected on day 3. The effects of extended prophylaxis treatment (daily from days −7 to +3 or days −7 to 0) were also compared with those of the shorter treatment regimens (days −1 to +3 or days −1 and 0). Early and late interventions with PC945 (2.8 to 350 μg/mouse; approximately 0.11 to ∼14 mg/kg of body weight) were found to inhibit lung fungal loads and to decrease the concentrations of galactomannan (GM) in both BALF and serum as well as several biomarkers in BALF (interferon gamma [IFN-γ], interleukin-17 [IL-17], and malondialdehyde) and serum (tumor necrosis factor alpha [TNF-α] and IL-6) in a dose-dependent manner and were >3- and >47-fold more potent than intranasally dosed posaconazole and voriconazole, respectively. Furthermore, extended prophylaxis with low-dose PC945 (0.56 μg/mouse; 0.022 mg/kg) was found to inhibit fungal loads and to decrease the concentrations biomarkers more potently than did the shorter treatment regimens. Thus, PC945 dosed intranasally once daily showed potent antifungal effects, and the effects of PC945 accumulated upon repeat dosing and were persistent. Therefore, PC945 has the potential to be a novel inhaled therapy for the treatment of A. fumigatus infection in humans.


2001 ◽  
Vol 69 (10) ◽  
pp. 6411-6418 ◽  
Author(s):  
Kim Langfelder ◽  
Bruno Philippe ◽  
Bernhard Jahn ◽  
Jean-Paul Latgé ◽  
Axel A. Brakhage

ABSTRACT Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. To be able to analyze the expression of putative virulence-associated genes of A. fumigatus, the use of the enhanced green fluorescent protein (EGFP) as a reporter was established. Two 5′ sequences, containing the putative promoters of thepyrG gene, encoding orotidine-5′-phosphate decarboxylase, and the pksP gene, encoding a polyketide synthase involved in both pigment biosynthesis and virulence ofA. fumigatus, were fused with the egfpgene. The PpksP-egfp construct was integrated via homologous recombination into the genomicpksP locus. EGFP production was analyzed by fluorescence spectrometry, Western blot analysis, and fluorescence microscopy. Differential gene expression in A. fumigatus was observed. Fluorescence derived from the PYRG-EGFP fusion protein was detected during all developmental stages of the fungus, i.e., during germination, during vegetative growth, in conidiophores, and weakly in conidia. In addition, it was also detected in germinating conidia when isolated from the lungs of immunocompromised mice. By contrast, PKSP-EGFP-derived fluorescence was not found in hyphae or stalks of conidiophores but was found in phialides and conidia in vitro when the fungus was grown under standard conditions, indicating a developmentally controlled expression of the gene. Interestingly,pksP-egfp expression was also detected in hyphae of germinating conidia isolated from the lungs of immunocompromised mice. This finding indicates that thepksP gene can also be expressed in hyphae under certain conditions and, furthermore, that the pksP gene might also contribute to invasive growth of the fungus.


2008 ◽  
Vol 52 (12) ◽  
pp. 4483-4485 ◽  
Author(s):  
Paul E. Verweij ◽  
Debbie T. A. Te Dorsthorst ◽  
Willem H. P. Janssen ◽  
Jacques F. G. M. Meis ◽  
Johan W. Mouton

ABSTRACT The antifungal agent flucytosine was found to be active in vitro against Aspergillus fumigatus isolates when the MIC was determined at pH 5.0 instead of pH 7.0. The in vitro MIC at pH 5.0 corresponded to the in vivo efficacy of flucytosine monotherapy in a murine model of invasive aspergillosis.


2019 ◽  
Vol 74 (10) ◽  
pp. 2950-2958 ◽  
Author(s):  
Thomas Colley ◽  
Cheshta Sharma ◽  
Alexandre Alanio ◽  
Genki Kimura ◽  
Leah Daly ◽  
...  

Abstract Objectives The growing emergence of azole-resistant Aspergillus fumigatus strains worldwide is a major concern for current systemic antifungal treatment. Here we report antifungal activities of a novel inhaled triazole, PC1244, against a collection of multi-azole-resistant A. fumigatus strains. Methods MICs of PC1244 were determined for A. fumigatus carrying TR34/L98H (n = 81), TR46/Y121F/T289A (n = 24), M220 (n = 6), G54 (n = 11), TR53 (n = 1), TR463/Y121F/T289A (n = 2), G448S (n = 1), G432C (n = 1) and P216S (n = 1) resistance alleles originating from either India, the Netherlands or France. The effects of PC1244 were confirmed in an in vitro model of the human alveolus and in vivo in temporarily neutropenic, immunocompromised mice. Results PC1244 exhibited potent inhibition [geometric mean MIC (range), 1.0 mg/L (0.125 to >8 mg/L)] of growth of A. fumigatus strains carrying cyp51A gene mutations, showing much greater potency than voriconazole [15 mg/L (0.5 to >16 mg/L)], and an effect similar to those on other azole-susceptible Aspergillus spp. (Aspergillus flavus, Aspergillus terreus, Aspergillus tubingensis, Aspergillus nidulans, Aspergillus niger, Aspergillus nomius, Aspergillus tamarii) (0.18–1 mg/L). In TR34/L98H and TR46/Y121F/T289A A. fumigatus-infected in vitro human alveolus models, PC1244 achieved superior inhibition (IC50, 0.25 and 0.34 mg/L, respectively) compared with that of voriconazole (IC90, >3 mg/L and >10 mg/L, respectively). In vivo, once-daily intranasal administration of PC1244 (0.56–70 μg/mouse) to the A. fumigatus (AF91 with M220V)-infected mice reduced pulmonary fungal load and serum galactomannan more than intranasal posaconazole. Conclusions PC1244 has the potential to become a novel topical treatment of azole-resistant pulmonary aspergillosis.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Thomas Colley ◽  
Alexandre Alanio ◽  
Steven L. Kelly ◽  
Gurpreet Sehra ◽  
Yasuo Kizawa ◽  
...  

ABSTRACT The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 μM and 0.22 μM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 μg/ml, while those of voriconazole ranged from 0.064 to 4 μg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 μg/ml, whereas voriconazole (0.019 to >1 μg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 μg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at 14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


2017 ◽  
Vol 56 (6) ◽  
pp. 703-710
Author(s):  
Michaela Lackner ◽  
Günter Rambach ◽  
Emina Jukic ◽  
Bettina Sartori ◽  
Josef Fritz ◽  
...  

Abstract No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.


1999 ◽  
Vol 43 (11) ◽  
pp. 2592-2599 ◽  
Author(s):  
David W. Denning ◽  
Peter Warn

ABSTRACT Using an isolate of Aspergillus fumigatus that is less susceptible in vivo to amphotericin B than most other isolates, we compared different doses of liposomal nystatin (L-nystatin), liposomal amphotericin B (L-amphotericin), and amphotericin B lipid complex (ABLC) with amphotericin B deoxycholate. Four experiments with intravenously infected neutropenic mice were conducted. A dose of L-nystatin at 10 mg/kg of body weight was toxic (the mice had fits or respiratory arrest). The optimal dosage of L-nystatin was 5 mg/kg daily on days 1, 2, 4, and 7 (90% survival). This was superior to L-amphotericin (5 mg/kg [P = 0.24] and 1 mg/kg [P < 0.0001]), ABLC (5 mg/kg [P = 0.014] and 1 mg/kg [P < 0.0001]), and amphotericin B deoxycholate (5 mg/kg [P = 0.008]). In terms of liver and kidney cultures, L-nystatin (5 mg/kg) was superior to all other regimens (P = 0.0032 and <0.0001, respectively). Higher doses of L-amphotericin (25 and 50 mg/kg) in one earlier experiment were more effective (100% survival) than 1 mg of L-amphotericin per kg and amphotericin deoxycholate (5 mg/kg) in terms of mortality and both liver and kidney culture results and to L-amphotericin (5 mg/kg) in terms of liver and kidney culture results only. ABLC (25 mg/kg) given daily for 7 days was superior to ABLC (50 mg/kg [P = 0.03]) but not to ABLC at 5 mg/kg or amphotericin B deoxycholate in terms of mortality, although it was in terms of liver and kidney culture results. No dose-response for amphotericin B (5 and 1 mg/kg) was demonstrable. In conclusion, in this stringent model, high doses of L-amphotericin and ABLC could overcome reduced susceptibility to amphotericin B deoxycholate, but all were inferior to 5- to 10-fold lower doses of L-nystatin.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 813
Author(s):  
Chukwuemeka Samson Ahamefule ◽  
Blessing C. Ezeuduji ◽  
James C. Ogbonna ◽  
Anene N. Moneke ◽  
Anthony C. Ike ◽  
...  

With the mortality rate of invasive aspergillosis caused by Aspergillus fumigatus reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of A. fumigatus to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against A. fumigatus when compared to the multitude that did against some other pathogens. Here, we review the marine bioactive compounds that display a bioactivity against A. fumigatus. The challenges hampering the discovery of antifungal agents from this rich habitat are also critically analyzed. Further, we propose strategies that could speed up an efficient discovery and broaden the dimensions of screening in order to obtain promising in vivo antifungal agents with new modes of action.


Sign in / Sign up

Export Citation Format

Share Document