scholarly journals 2605. Mixed Subpopulation of Hemolytic and Non-Hemolytic Phenotype in Clinical Staphylococcus aureus Blood Isolates

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S905-S906
Author(s):  
Seongman Bae ◽  
Eunbeen Cho ◽  
Eunmi Yang ◽  
Hyeonji Seo ◽  
Eun Sil Kim ◽  
...  

Abstract Background Agr is a key regulator that controls expression of secreted exoproteins and surface protein in Staphylococcus aureus. It has been reported that mixed status of two different phenotypes including agr functional and nonfunctional subpopulations can coexist in vitro and in vivo. However, data on the natural course and clinical implication of the mixed agr status is limited. We thus investigated the frequency and characteristics of the mixed agr in clinical settings. Methods We evaluated isogenic paired MRSA isolates collected from patients with persistent S. aureus bacteremia (SAB) between October 2010 and April 2016, and then prospectively performed surveillance for the presence of mixed agr function in MRSA isolates from patients with SAB between May 2016 and December 2017. The mixed agr status was evaluated by single colony evaluation on sheep blood agar plate containing RN4220 supernatant (β-hemolysin) (Figure 1). Cross-streaking with RN4220 and RNAIII measurement were performed to confirm the agr functionality of each of hemolytic and non-hemolytic colonies, separately. The expression levels of RNAIII, hla, and saeS/saeR were measured by real-time reverse transcription polymerase chain reaction. Results A total of 161 first blood isolates were collected during study period, and 6 isolates (4%) displayed mixed phenotype by single colony test. The mixed hemolytic pattern was observed in 5 out of 52 ST72 isolates (10%) and 1 out of 82 ST5 isolates (1%) (Figure 1). No difference was found in the genotypes between hemolytic and non-hemolytic colonies from each isolate. Of the 6 isolates, three lost mixed hemolytic features in the follow-up blood cultures (Table 1). One ST72 and one ST5 isolate showed agr mixed pattern determined by different RNAIII levels, but remaining four ST72 isolates had mixed hemolytic pattern due to different expression of hla correlated with saeS/saeR expression (Figure 2). Conclusion The mixture of agr function status among the clinical blood isolates of MRSA was rarely observed and isolates displaying heterogeneous hemolytic phenotype were largely due to differential expression of α-hemolysin. Further investigation is needed to unveil the clinical significance of mixture of different hemolytic phenotypes. Disclosures All authors: No reported disclosures.

2021 ◽  
Vol 12 ◽  
Author(s):  
Elysia A. Masters ◽  
Gowrishankar Muthukrishnan ◽  
Lananh Ho ◽  
Ann Lindley Gill ◽  
Karen L. de Mesy Bentley ◽  
...  

Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (μSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 692
Author(s):  
Giulia Franzoni ◽  
Antonio Anfossi ◽  
Chiara Grazia De Ciucis ◽  
Samanta Mecocci ◽  
Tania Carta ◽  
...  

Toll-like receptor 2 (TLR2) ligands are attracting increasing attention as prophylactic and immunotherapeutic agents against pathogens and tumors. We previously observed that a synthetic diacylated lipopeptide based on a surface protein of Mycoplasma agalactiae (Mag-Pam2Cys) strongly activated innate immune cells, including porcine monocyte-derived macrophages (moMΦ). In this study, we utilized confocal microscopy, flow cytometry, multiplex cytokine ELISA, and RT-qPCR to conduct a comprehensive analysis of the effects of scalar doses of Mag-Pam2Cys on porcine moMΦ. We observed enhanced expression of activation markers (MHC class I, MHC class II DR, CD25), increased phagocytotic activity, and release of IL-12 and proinflammatory cytokines. Mag-Pam2Cys also upregulated the gene expression of several IFN-α subtypes, p65, NOS2, and molecules with antimicrobial activities (CD14, beta defensin 1). Overall, our data showed that Mag-Pam2Cys polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. However, Mag-Pam2Cys downregulated the expression of IFN-α3, six TLRs (TLR3, -4, -5, -7, -8, -9), and did not interfere with macrophage polarization induced by the immunosuppressive IL-10, suggesting that the inflammatory activity evoked by Mag-Pam2Cys could be regulated to avoid potentially harmful consequences. We hope that our in vitro results will lay the foundation for the further evaluation of this diacylated lipopeptide as an immunopotentiator in vivo.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2319
Author(s):  
Klara Lalouckova ◽  
Lucie Mala ◽  
Petr Marsik ◽  
Eva Skrivanova

Ultra-high performance liquid chromatography/mass spectrometry showed soyasaponin I and the isoflavones daidzein, genistein, and glycitein to be the main components of the methanolic extract of the Korean soybean fermented product doenjang, which is known to be a rich source of naturally occurring bioactive substances, at average contents of 515.40, 236.30, 131.23, and 29.00 ng/mg, respectively. The antimicrobial activity of the methanolic extract of doenjang against nine Staphylococcusaureus strains was determined in vitro by the broth microdilution method to investigate its potential to serve as an alternative antibacterial compound. The results suggest that the extract is an effective antistaphylococcal agent at concentrations of 2048–4096 µg/mL. Moreover, the tested extract also showed the ability to inhibit the growth of both methicillin-sensitive and methicillin-resistant animal and clinical S. aureus isolates. The growth kinetics of the chosen strains of S. aureus at the minimum inhibitory concentration of the methanolic extract of doenjang support the idea that the tested extract acts as an antibacterial compound. To the best of our knowledge, this is the first report on the antistaphylococcal action of the methanolic extract of doenjang thus, additional studies including in vivo testing are necessary to confirm this hypothesis.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Ana Nikolic ◽  
Anna Bobyn ◽  
Katrina Ellestad ◽  
Xueqing Lun ◽  
Michael Johnston ◽  
...  

Abstract Glioblastoma cells with the crucial stemness property of self-renewal constitute therapy-resistant reservoirs that seed tumor relapse. Effective targeting of these cells in clinical settings has been hampered by their relative quiescence, which invalidates the cell replication bias of most current treatments. Furthermore, although their dependence on specific chromatin and transcriptional states for the maintenance of stemness programs has been proposed as a vulnerability, these nuclear programs have been challenging to target pharmaceutically. Therefore the identification of targetable chromatin paradigms regulating self-renewal would represent a significant advancement for this incurable malignancy. Here we report a new role for the histone variant macroH2A2 in modulating a targetable epigenetic network of stemness in glioblastoma. By integrating transcriptomic, bulk and single-cell epigenomic datasets we generated from patient-derived models and surgical specimens, we show that macroH2A2 represses a transcriptional network of stemness through direct regulation of chromatin accessibility at enhancer elements. Functional assays in vitro and in vivo further showcase that macroH2A2 antagonizes self-renewal and stemness in glioblastoma preclinical models. In agreement with our experimental findings, high expression of macroH2A2 is a positive prognostic factor in clinical glioblastoma cohorts. Reasoning that increasing macroH2A2 levels could be an effective strategy to repress stemness programs and ameliorate patient outcome, we embarked on a screen to identify compounds that could elevate macroH2A2 levels. We report that an inhibitor of the chromatin remodeler Menin increases macroH2A2 levels, which in turn repress self-renewal. Additionally, we provide evidence that Menin inhibition induces viral mimicry programs and the demise of glioblastoma cells. Menin inhibition is being tested in clinical trials for blood malignancies (NCT04067336). Our preclinical work therefore reveals a novel and central role for macroH2A2 in an epigenetic network of stemness and suggests new clinical approaches for glioblastoma.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sudarson Sundarrajan ◽  
Junjappa Raghupatil ◽  
Aradhana Vipra ◽  
Nagalakshmi Narasimhaswamy ◽  
Sanjeev Saravanan ◽  
...  

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


Sign in / Sign up

Export Citation Format

Share Document