A Preliminary Case for Wave Function Realism

Author(s):  
Alyssa Ney

This chapter explains the use of wave functions in quantum mechanics in order to develop a preliminary argument for wave function realism, one that is commonly found in the physics and philosophy of physics literature. It distinguishes ontological questions about the status of the wave function from the more discussed measurement problem for quantum mechanics, and explains how wave function realism is an approach to ontology that is compatible with several rival solutions to the measurement problem. The chapter then presents an initial, but not ultimately decisive, argument for wave function realism based on the ubiquity of wave function representations in quantum physics.

Author(s):  
David Wallace

Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made difficult by the fact that the ‘measurement problem’, as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This paper has two goals: firstly (§§1–2), to present an account of how quantum measurements are actually dealt with in modern physics (hint: it does not involve a collapse of the wave function) and to state the measurement problem from the perspective of that account; and secondly (§§3–4), to clarify what role decoherence plays in modern measurement theory and what effect it has on the various strategies that have been proposed to solve the measurement problem.


2016 ◽  
Vol 71 (3) ◽  
pp. 195-212
Author(s):  
H. Dieter Zeh

AbstractThis is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are “occupied once” (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the “configuration” space of fundamental fields, or on another, as yet elusive, fundamental local basis.


Author(s):  
Alberto Rimini

This extended note deals with a pedagogical description of the entangled state of two particles, starting from first principles. After some general remarks about quantum mechanics and physical theories, the single particle case is discussed by defining state, uncertainty relations and wave function in the state space. The system of two particles is then considered, with its possible states, starting from the original papers by Einstein Podolsky Rosen and by Schroedinger. The quantum measurement problem is then introduced, together with its role in the entanglement state. Finally the orthodox solution and the relevant conclusions are drawn.


1997 ◽  
Vol 12 (29) ◽  
pp. 5289-5303
Author(s):  
V. K. Thankappan ◽  
Ravi K. Menon

The concept of elements of physical reality (e.p.r.) in quantum mechanics as defined by Einstein, Podolsky and Rosen (EPR) is discussed in the context of the EPR–Bohm and the EPR–Bell experiments on a pair of spin 1/2 particles in the singlet state. It is argued that EPR's definition of e.p.r. is appropriate to the EPR–Bell experiment rather than to the EPR–Bohm experiment, and that Bohr's interpretation of e.p.r. is also consistent with such a viewpoint. It is shown that the observed correlation between the spins of the two particles in the EPR–Bell experiment is just a manifestation of the correlation that exists between the wave functions of the particles in the singlet state and a consequence of the fact that a Stern–Gerlach magnet does not change the state of a particle but only transforms its wave function into a representation defined by the axis of the magnet. As such, the correlation is suggested to be an affirmation of Einstein's concept of locality, and not an evidence for nonlocality.


Author(s):  
Joaquin Trujillo

The articles provides a phenomenological reading of the Many-Worlds Interpretation (MWI) of quantum mechanics and its answer to the measurement problem, or the question of “why only one of a wave function’s probable values is observed when the system is measured.” Transcendental-phenomenological and hermeneutic-phenomenological approaches are employed. The project comprises four parts. Parts one and two review MWI and the standard (Copenhagen) interpretation of quantum mechanics. Part three reviews the phenomenologies. Part four deconstructs the hermeneutics of MWI. It agrees with the confidence the theory derives from its (1) unforgiving appropriation of the Schrödinger equation and (2) association of branching universes with the evolution of the wave function insofar as that understanding comes from the formalism itself. Part four also reveals the hermeneutical shortcomings of the standard interpretation.


1995 ◽  
Vol 38 ◽  
pp. 73-83
Author(s):  
Nancy Cartwright

This paper, I am afraid, advocates the philosophy of technology without actually doing it. It can best be seen as a plea for the philosophical importance of technology; in this case, importance to one of the most widely discussed problems in philosophy of physics—the measurement problem in quantum mechanics. What I want to do here is to lay out a point of view that takes the measurement problem out of the abstract mathematical structure of theory, where we discuss questions about unitary operators or conditions for the disappearance of certain inner products supposed to represent interference terms, and locate it elsewhere. Where is the measurement problem? Answer: It had better be found in the quantum technology or it is not to be found at all. My view in many respects follows ideas I have learned from Willis Lamb.


2016 ◽  
Vol 31 (21) ◽  
pp. 1640006 ◽  
Author(s):  
Patrick Peter ◽  
Sandro D. P. Vitenti

We present and expand the simplest possible quantum cosmological bouncing model already discussed in previous works: the trajectory formulation of quantum mechanics applied to cosmology (through the Wheeler–De Witt equation) in the Friedmann–Lemaître–Robertson–Walker (FLRW) minisuperspace without spatial curvature. The initial conditions that were previously assumed were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a nonsingular bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non-symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperspace.


2020 ◽  
Author(s):  
Douglas Michael Snyder

A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists’ consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen’s theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level. Original article in The Journal of Mind and Behavior is on JSTOR at https://www.jstor.org/stable/pdf/43853678.pdf?seq=1 . Preprint on CERN preprint server at https://cds.cern.ch/record/569426 .


Author(s):  
Alyssa Ney

In quantum mechanics, entangled states are not exotic or rare. Rather, entanglement is the norm and so the metaphysical consequences of entanglement are a central issue for anyone wishing to provide an ontological interpretation of the various formulations of quantum mechanics. This chapter presents the argument for wave function realism from quantum entanglement, which says that wave function realism is necessary if one wants an ontological interpretation that does not conflate distinct quantum states. It explains quantum entanglement and how postulating a wave function in higher dimensions can help to metaphysically ground the phenomenon. The chapter ultimately concludes that the argument from quantum entanglement fails as there are several rival positions that can also explain quantum entanglement and recover the distinctions between different entangled states. These include the primitive ontology approach, various other holisms, ontic structural realism, spacetime state realism, and the multi-field approach.


Author(s):  
Anouk Barberousse

Philosophical reflections on physics and its theories have been shaping the agenda of general philosophy of science, including issues such as the nature of scientific theories, the meaning of scientific terms, and scientific modeling. But physics is also well worth being considered a special science of its own, whose methods and tools raised specific questions for philosophers of science: this is the approach followed in this chapter, which has as its main thread the role of mathematics in physical theories. It tackles classical issues concerning measurement and determinism and long-standing controversies in the philosophy of statistical mechanics (how may the reversible laws of mechanics account for the irreversible principles of thermodynamics?) and in the philosophy of quantum physics (does quantum mechanics provide us a with a complete description of quantum phenomena?). It also addresses emerging issues in the field, such as computer simulations and their role between theory and observation.


Sign in / Sign up

Export Citation Format

Share Document