Introduction

Bioprinting ◽  
2021 ◽  
pp. 1-2
Author(s):  
Kenneth Douglas

Abstract: Bioprinting: To Make Ourselves Anew describes how bioprinting emerged from 3D printing and details the accomplishments and challenges in bioprinting tissues of cartilage, skin, bone, muscle, neuromuscular junctions, liver, heart, lung, and kidney. It explains how scientists are attempting to provide these bioprinted tissues with a blood supply and the ability to carry nerve signals so that the tissues might be used for transplantation into persons with diseased or damaged organs. The book presents all the common terms in the bioprinting field and clarifies their meaning using plain language. The reader will learn about bioink—a bioprinting material containing living cells and supportive biomaterials. Additionally, readers will become at ease with concepts such as fugitive inks (sacrificial inks used to make channels for blood flow), extracellular matrices (the biological environment surrounding cells), decellularization (the process of isolating cells from their native environment), hydrogels (water-based substances that can substitute for the extracellular matrix), rheology (the flow properties of a bioink), bioreactors (containers to provide the environment cells need to thrive and multiply). Further vocabulary that will become familiar includes diffusion (passive movement of oxygen and nutrients from regions of high concentration to regions of low concentration), stem cells (cells with the potential to develop into different bodily cell types), progenitor cells (early descendants of stem cells), gene expression (the process by which proteins develop from instructions in our DNA), and growth factors (substances—often proteins—that stimulate cell growth, proliferation, and differentiation). The book contains an extensive glossary for quick reference.

Author(s):  
Kenneth Douglas

Abstract: This book describes how bioprinting emerged from 3D printing and details the accomplishments and challenges in bioprinting tissues of cartilage, skin, bone, muscle, neuromuscular junctions, liver, heart, lung, and kidney. It explains how scientists are attempting to provide these bioprinted tissues with a blood supply and the ability to carry nerve signals so that the tissues might be used for transplantation into persons with diseased or damaged organs. The book presents all the common terms in the bioprinting field and clarifies their meaning using plain language. Readers will learn about bioink—a bioprinting material containing living cells and supportive biomaterials. In addition, readers will become at ease with concepts such as fugitive inks (sacrificial inks used to make channels for blood flow), extracellular matrices (the biological environment surrounding cells), decellularization (the process of isolating cells from their native environment), hydrogels (water-based substances that can substitute for the extracellular matrix), rheology (the flow properties of a bioink), and bioreactors (containers to provide the environment cells need to thrive and multiply). Further vocabulary that will become familiar includes diffusion (passive movement of oxygen and nutrients from regions of high concentration to regions of low concentration), stem cells (cells with the potential to develop into different bodily cell types), progenitor cells (early descendants of stem cells), gene expression (the process by which proteins develop from instructions in our DNA), and growth factors (substances—often proteins—that stimulate cell growth, proliferation, and differentiation). The book contains an extensive glossary for quick reference.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 663
Author(s):  
Kwang-Hyun Baek ◽  
Jihye Choi ◽  
Chang-Zhu Pei

Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency, and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm. It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and differentiation of proliferating cells.


2019 ◽  
Vol 20 (15) ◽  
pp. 3824 ◽  
Author(s):  
Larisa Ryskalin ◽  
Anderson Gaglione ◽  
Fiona Limanaqi ◽  
Francesca Biagioni ◽  
Pietro Familiari ◽  
...  

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor featuring rapid cell proliferation, treatment resistance, and tumor relapse. This is largely due to the coexistence of heterogeneous tumor cell populations with different grades of differentiation, and in particular, to a small subset of tumor cells displaying stem cell-like properties. This is the case of glioma stem cells (GSCs), which possess a powerful self-renewal capacity, low differentiation, along with radio- and chemo-resistance. Molecular pathways that contribute to GBM stemness of GSCs include mTOR, Notch, Hedgehog, and Wnt/β-catenin. Remarkably, among the common biochemical effects that arise from alterations in these pathways, autophagy suppression may be key in promoting GSCs self-renewal, proliferation, and pluripotency maintenance. In fact, besides being a well-known downstream event of mTOR hyper-activation, autophagy downregulation is also bound to the effects of aberrantly activated Notch, Hedgehog, and Wnt/β-catenin pathways in GBM. As a major orchestrator of protein degradation and turnover, autophagy modulates proliferation and differentiation of normal neuronal stem cells (NSCs) as well as NSCs niche maintenance, while its failure may contribute to GSCs expansion and maintenance. Thus, in the present review we discuss the role of autophagy in GSCs metabolism and phenotype in relationship with dysregulations of a variety of NSCs controlling pathways, which may provide novel insights into GBM neurobiology.


2021 ◽  
Author(s):  
Myret Ghabriel ◽  
Ahmed El Hosseiny ◽  
Ahmed Moustafa ◽  
Asma Amleh

Mesenchymal stromal/stem cells (MSCs) are multipotent cells residing in multiple tissues with the capacity for self-renewal and differentiation into various cell types. These properties make them promising candidates for regenerative therapies. MSC identification is critical in yielding pure populations for successful therapeutic applications; however, the criteria for MSC identification proposed by the International Society for Cellular Therapy (ISCT) is inconsistent across different tissue sources. In this study, we aimed to identify potential markers to be used together with the ISCT criteria to provide a more accurate means of MSC identification. Thus, we carried out a comparative analysis of the expression of human and mouse MSCs derived from multiple tissues to identify the common differentially expressed genes. We show that six members of the proteasome degradation system are similarly expressed across MSCs derived from bone marrow, adipose tissue, amnion, and umbilical cord. Also, with the help of predictive models, we found that these genes successfully identified MSCs across all the tissue sources tested. Moreover, using genetic interaction networks, we showed a possible link between these genes and antioxidant enzymes in the MSC antioxidant defense system, thereby pointing to their potential role in prolonging the life span of MSCs. Our results suggest that these genes can be used as stemness-related markers.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min Wang ◽  
Wene Zhao ◽  
Fuqiang Wang ◽  
Xiufeng Ling ◽  
Daozhen Chen ◽  
...  

Spermatogonial stem cells (SSCs) are exquisitely regulated to reach a balance between proliferation and differentiation in the niche of seminiferous epithelium. Several extrinsic factors such as GDNF are reported to switch the transition, activating various intrinsic signaling pathways. Transcriptomics analysis could provide a comprehensive landscape of gene expression and regulation. Here, we reanalyzed a previously published transcriptome of two cell types (standing for self-renewing and differentiating SSCs correspondingly). First, we proposed a new parameter, the expression index, to sort the genes considering both absolute and relative expression levels. Using a dynamic statistical model, we identified a list of 1119 candidate genes for SSC self-renewal with the best enrichment of canonical markers. Finally, based on interaction relations, we further optimized the list and constructed a refined network containing integrated information of interactions, expression alternations, biological functions, and disease associations. Further annotation of the 521 refined genes involved in the network revealed an enrichment of well-studied signaling pathways. We believe that the refined network could help us better understand the regulation of SSCs’ fates, as well as find novel regulators or targets for SSC self-renewal or preservation of male fertility.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Yi Wang ◽  
Youguo Ying ◽  
Xiaoyan Cui

Mesenchymal stem cells (MSCs) are multipotential cells with capability to form coloniesin vitroand differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs). Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs). Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG). The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Takahiro Teshima ◽  
Akito Matsuoka ◽  
Maika Shiba ◽  
Kazuho Dairaku ◽  
Hirotaka Matsumoto ◽  
...  

Adipose-derived mesenchymal stem cells (ADSCs) have been suggested their benefits in regenerative medicine for various diseases. Lipomas, benign neoplasms in adipose tissue, have been reported as a potential source of stem cells. These lipoma-derived mesenchymal stem cells (LDSCs) may be useful for regenerative medicine. However, the detailed characteristics of LDSCs have not been fully elucidated. This study investigated the cellular proteomics and secretomes of canine LDSCs in addition to morphology and proliferation and differentiation capacities. Some LDSCs isolated from canine subcutaneous lipomas were morphologically different from ADSCs and showed a rounded shape instead of fibroblast-like morphology. The phenotype of cell surface markers in LDSCs was similar to those in ADSCs, but CD29 and CD90 stem cell markers were more highly expressed compared with those of ADSCs. LDSCs had noticeably high proliferation ability, but no significant differences were observed compared with ADSCs. In regard to differentiation capacity compared to ADSCs, LDSCs showed higher adipogenesis, but no differences were observed with osteogenesis. Cellular proteomic analysis using two-dimensional gel electrophoresis revealed that over 95% of protein spots showed similar expression levels between LDSCs and ADSCs. Secretome analysis was performed using iTRAQ and quantitative cytokine arrays. Over 1900 proteins were detected in conditioned medium (CM) of LDSCs and ADSCs, and 94.0% of detected proteins showed similar expression levels between CM of both cell types. Results from cytokine arrays including 20 cytokines showed no significant differences between CM of LDSCs and that of ADSCs. Our results indicate that canine LDSCs had variability in characteristics among individuals in contrast with those of ADSCs. Cellular proteomics and secretomes were similar in both LDSCs and ADSCs. These findings suggest that LDSCs may be suitable for application in regenerative medicine.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Anyou Wang ◽  
Yan Zhong ◽  
Yanhua Wang ◽  
Qianchuan He

Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.


2015 ◽  
Vol 8 (1) ◽  
pp. 52
Author(s):  
Marianne Doorenbos ◽  
Lu Shi-Jiang ◽  
Dong Feng Chen ◽  
◽  
◽  
...  

Glaucoma is the most common form of optic neuropathy and a major cause of blindness worldwide. Currently, there is no cure for glaucoma. Damage to retinal ganglion cells and optic nerve caused by the diseases is permanent. Stem cells, which can divide indefinitely and differentiate into various cell types, offer a great premise for cell-replacement therapy. Recent breakthroughs in stem cell research that enable generation of pluripotent stem cells from adult somatic cells by reprogramming technology have opened new therapeutic possibilities. However, besides the common factors in inducing directed and homogenous cell differentiation and integration into the host tissue and establishing functionality, stem cell therapy for glaucoma is especially challenged by difficulties in driving optic nerve regeneration or repair. On the contrary, stem cell transplantation may still gain functional benefits by secreting neurotrophic factors and promoting neural plasticity. This review will discuss these advances and challenges in stem cell therapy.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 89
Author(s):  
Gi Cheol Park ◽  
Hyung-Sik Kim ◽  
Hee-Young Park ◽  
Yoojin Seo ◽  
Ji Min Kim ◽  
...  

Human palatine tonsils are potential tissue source of multipotent mesenchymal stem cells (MSCs). The proliferation rate of palatine tonsil-derived MSCs (TMSCs) is far higher than that of bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs (ADSCs). In our previous study, we had found through DNA microarray analysis that tensin-3 (TNS3), a type of focal adhesion protein, was more highly expressed in TMSCs than in both BMSCs and ADSCs. Here, the role of TNS3 in TMSCs and its relationship with integrin were investigated. TNS3 expression was significantly elevated in TMSCs than in other cell types. Cell growth curves revealed a significant decrease in the proliferation and migration of TMSCs treated with siRNA for TNS3 (siTNS3). siTNS3 treatment upregulated p16 and p21 levels and downregulated SOX2 expression and focal adhesion kinase, protein kinase B, and c-Jun N-terminal kinase phosphorylation. siTNS3 transfection significantly reduced adipogenic differentiation of TMSCs and slightly decreased osteogenic and chondrogenic differentiation. Furthermore, TNS3 inhibition reduced active integrin beta-1 (ITGβ1) expression, while total ITGβ1 expression was not affected. Inhibition of ITGβ1 expression in TMSCs by siRNA showed similar results observed in TNS3 inhibition. Thus, TNS3 may play an important role in TMSC proliferation and differentiation by regulating active ITGβ1 expression.


Sign in / Sign up

Export Citation Format

Share Document