scholarly journals Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits

2021 ◽  
Author(s):  
Yi Ren ◽  
Maoying Li ◽  
Shaogui Guo ◽  
Honghe Sun ◽  
Jianyu Zhao ◽  
...  

Abstract How raffinose (Raf) family oligosaccharides, the major translocated sugars in the vascular bundle in cucurbits, are hydrolyzed and subsequently partitioned has not been fully elucidated. By performing reciprocal grafting of watermelon (Citrullus lanatus) fruits to branch stems, we observed that Raf was hydrolyzed in the fruit of cultivar watermelons but was backlogged in the fruit of wild ancestor species. Through a genome-wide association study, the alkaline alpha-galactosidase ClAGA2 was identified as the key factor controlling stachyose and Raf hydrolysis, and it was determined to be specifically expressed in the vascular bundle. Analysis of transgenic plants confirmed that ClAGA2 controls fruit Raf hydrolysis and reduces sugar content in fruits. Two single-nucleotide polymorphisms (SNPs) within the ClAGA2 promoter affect the recruitment of the transcription factor ClNF-YC2 (nuclear transcription factor Y subunit C) to regulate ClAGA2 expression. Moreover, this study demonstrates that C. lanatus Sugars Will Eventually Be Exported Transporter 3 (ClSWEET3) and Tonoplast Sugar Transporter (ClTST2) participate in plasma membrane sugar transport and sugar storage in fruit cell vacuoles, respectively. Knocking out ClAGA2, ClSWEET3, and ClTST2 affected fruit sugar accumulation. Genomic signatures indicate that the selection of ClAGA2, ClSWEET3, and ClTST2 for carbohydrate partitioning led to the derivation of modern sweet watermelon from non-sweet ancestors during domestication.

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2400
Author(s):  
Xu Wu ◽  
Feng Chen ◽  
Xiaozhen Zhao ◽  
Chengke Pang ◽  
Rui Shi ◽  
...  

Oilseed–vegetable-dual-purpose (OVDP) rapeseed can effectively alleviate the land contradiction between crops and it supplements vegetable supplies in winter or spring. The soluble solids content (SSC) is an important index that is used to evaluate the quality and sugar content of fruits and vegetables. However, the genetic architecture underlying the SSC in Brassica napus shoots is still unclear. Here, quantitative trait loci (QTLs) for the SSC in B. napus shoots were investigated by performing linkage mapping using a recombinant inbred line population containing 189 lines. A germplasm set comprising 302 accessions was also used to conduct a genome-wide association study (GWAS). The QTL mapping revealed six QTLs located on chromosomes A01, A04, A08, and A09 in two experiments. Among them, two major QTLs, qSSC/21GY.A04-1 and qSSC/21NJ.A08-1, accounted for 12.92% and 10.18% of the phenotypic variance, respectively. In addition, eight single-nucleotide polymorphisms with phenotypic variances between 5.62% and 10.18% were identified by the GWAS method. However, no locus was simultaneously identified by QTL mapping and GWAS. We identified AH174 (7.55 °Brix and 7.9 °Brix), L166 (8.9 °Brix and 8.38 °Brix), and L380 (8.9 °Brix and 7.74 °Brix) accessions can be used as superior parents. These results provide valuable information that increases our understanding of the genetic control of SSC and will facilitate the breeding of high-SSC B. napus shoots.


2021 ◽  
pp. 174749302110062
Author(s):  
Bin Yan ◽  
Jian Yang ◽  
Li Qian ◽  
Fengjie Gao ◽  
Ling Bai ◽  
...  

Background: Observational studies have found an association between visceral adiposity and stroke. Aims: The purpose of this study was to investigate the role and genetic effect of visceral adipose tissue (VAT) accumulation on stroke and its subtypes. Methods: In this two-sample Mendelian randomization (MR) study, genetic variants (221 single nucleotide polymorphisms; P<5×10-8) using as instrumental variables for MR analysis was obtained from a genome-wide association study (GWAS) of VAT. The outcome datasets for stroke and its subtypes were obtained from the MEGASTROKE consortium (up to 67,162 cases and 453,702 controls). MR standard analysis (inverse variance weighted method) was conducted to investigate the effect of genetic liability to visceral adiposity on stroke and its subtypes. Sensitivity analysis (MR-Egger, weighted median, MR-PRESSO) were also utilized to assess horizontal pleiotropy and remove outliers. Multi-variable MR analysis was employed to adjust potential confounders. Results: In the standard MR analysis, genetically determined visceral adiposity (per 1 SD) was significantly associated with a higher risk of stroke (odds ratio [OR] 1.30; 95% confidence interval [CI] 1.21-1.41, P=1.48×10-11), ischemic stroke (OR 1.30; 95% CI 1.20-1.41, P=4.01×10-10), and large artery stroke (OR 1.49; 95% CI 1.22-1.83, P=1.16×10-4). The significant association was also found in sensitivity analysis and multi-variable MR analysis. Conclusions: Genetic liability to visceral adiposity was significantly associated with an increased risk of stroke, ischemic stroke, and large artery stroke. The effect of genetic susceptibility to visceral adiposity on the stroke warrants further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Misbah Razzaq ◽  
Maria Jesus Iglesias ◽  
Manal Ibrahim-Kosta ◽  
Louisa Goumidi ◽  
Omar Soukarieh ◽  
...  

AbstractVenous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10–7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 148
Author(s):  
Camilo E. Valenzuela ◽  
Paulina Ballesta ◽  
Sunny Ahmar ◽  
Sajid Fiaz ◽  
Parviz Heidari ◽  
...  

The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dennis Katuuramu ◽  
Sandra Branham ◽  
Amnon Levi ◽  
Patrick Wechter

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas Citrullus amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 - 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding disease resistance proteins, leucine-rich repeat receptor-like protein kinase, and WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2709-2712 ◽  
Author(s):  
Maria E. Sarasquete ◽  
Ramon García-Sanz ◽  
Luis Marín ◽  
Miguel Alcoceba ◽  
Maria C. Chillón ◽  
...  

Abstract We have explored the potential role of genetics in the development of osteonecrosis of the jaw (ONJ) in multiple myeloma (MM) patients under bisphosphonate therapy. A genome-wide association study was performed using 500 568 single nucleotide polymorphisms (SNPs) in 2 series of homogeneously treated MM patients, one with ONJ (22 MM cases) and another without ONJ (65 matched MM controls). Four SNPs (rs1934951, rs1934980, rs1341162, and rs17110453) mapped within the cytochrome P450-2C gene (CYP2C8) showed a different distribution between cases and controls with statistically significant differences (P = 1.07 × 10−6, P = 4.231 × 10−6, P = 6.22 × 10−6, and P = 2.15 × 10−6, respectively). SNP rs1934951 was significantly associated with a higher risk of ONJ development even after Bonferroni correction (P corrected value = .02). Genotyping results displayed an overrepresentation of the T allele in cases compared with controls (48% vs 12%). Thus, individuals homozygous for the T allele had an increased likelihood of developing ONJ (odds ratio 12.75, 95% confidence interval 3.7-43.5).


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1897
Author(s):  
Endale G. Tafesse ◽  
Krishna K. Gali ◽  
V. B. Reddy Lachagari ◽  
Rosalind Bueckert ◽  
Thomas D. Warkentin

Heat and drought, individually or in combination, limit pea productivity. Fortunately, substantial genetic diversity exists in pea germplasm for traits related to abiotic stress resistance. Understanding the genetic basis of resistance could accelerate the development of stress-adaptive cultivars. We conducted a genome-wide association study (GWAS) in pea on six stress-adaptive traits with the aim to detect the genetic regions controlling these traits. One hundred and thirty-five genetically diverse pea accessions were phenotyped in field studies across three or five environments under stress and control conditions. To determine marker trait associations (MTAs), a total of 16,877 valuable single nucleotide polymorphisms (SNPs) were used in association analysis. Association mapping detected 15 MTAs that were significantly (p ≤ 0.0005) associated with the six stress-adaptive traits averaged across all environments and consistent in multiple individual environments. The identified MTAs were four for lamina wax, three for petiole wax, three for stem thickness, two for the flowering duration, one for the normalized difference vegetation index (NDVI), and two for the normalized pigment and chlorophyll index (NPCI). Sixteen candidate genes were identified within a 15 kb distance from either side of the markers. The detected MTAs and candidate genes have prospective use towards selecting stress-hardy pea cultivars in marker-assisted selection.


Author(s):  
Haijiang Liu ◽  
xiaojuan Li ◽  
Qianwen Zhang ◽  
pan yuan ◽  
Lei Liu ◽  
...  

Phytate is the storage form of phosphorus in angiosperm seeds and plays vitally important roles during seed development. However, in crop plants phytate decreases bioavailability of seed-sourced mineral elements for humans, livestock and poultry, and contributes to phosphate-related water pollution. However, there is little knowledge about this trait in oilseed rape B. napus (oilseed rape). Here, a panel of 505 diverse B. napus accessions was screened in a genome-wide association study (GWAS) using 3.28 x 106 single nucleotide polymorphisms (SNPs). This identified 119 SNPs significantly associated with phytate concentration (PA_Conc) and phytate content (PA_Cont) and six candidate genes were identified. Of these, BnaA9.MRP5 represented the candidate gene for the significant SNP chrA09_5198034 (27kb) for both PA_Cont and PA_Conc. Transcription of BnaA9.MRP5 in a low -phytate variety (LPA20) was significantly elevated compared with a high -phytate variety (HPA972). Association and haplotype analysis indicated that inbred lines carrying specific SNP haplotypes within BnaA9.MRP5 were associated with high- and low-phytate phenotypes. No significant differences in seed germination and seed yield were detected between low and high phytate cultivars examined. Candidate genes, favorable haplotypes and the low phytate varieties identified in this study will be useful for low-phytate breeding of B. napus.


Sign in / Sign up

Export Citation Format

Share Document