Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization

Author(s):  
Dong Huang ◽  
Qian Wang ◽  
Guangquan Jing ◽  
Mengnan Ma ◽  
Chao Li ◽  
...  

Abstract Most land plant species have the ability to establish a symbiosis with arbuscular mycorrhizal (AM) fungi. These fungi penetrate into root cortical cells and form branched structures (known as arbuscules) for nutrient exchange. We cloned the MdIAA24 from apple (Malus domestica) following its up-regulation during AM symbiosis. Results demonstrate the positive impact of the overexpression (OE) of MdIAA24 in apple on AM colonization. We observed the strigolactone (SL) synthesis genes, including MdD27, MdCCD7, MdCCD8a, MdCCD8b and MdMAXa, to be up-regulated in the OE lines. Thus, the OE lines exhibited both a higher SL content and colonization rate. Furthermore, we observed that the OE lines were able to maintain better growth parameters under AM inoculation conditions. Under drought stress with the AM inoculation, the OE lines were less damaged, which was demonstrated by a higher relative water content, a lower relative electrolytic leakage, a greater osmotic adjustment, a higher reactive oxygen species scavenging ability, an improved gas exchange capacity and an increased chlorophyll fluorescence performance. Our findings demonstrate that the OE of MdIAA24 in apple positively regulates the synthesis of SL and the formation of arbuscules as a drought stress coping mechanism.

Author(s):  
Fahad Nasir ◽  
Ali Bahadur ◽  
Xiaolong Lin ◽  
Yingzhi Gao ◽  
Chunjie Tian

Abstract More than 80% of land plant species benefit from symbiotic partnerships with arbuscular mycorrhizal (AM) fungi that assist in nutrient acquisition and enhance the ability of host plants to adapt to environmental constraints. Host-generated plasma membrane-residing receptor-like kinases and the α/β-hydrolases, e.g. DWARF14-LIKE (D14L), a putative karrikin receptor, are used to detect the presence of AM fungi prior to physical contact between the host and fungus. Detection induces the activation of symbiosis-related transcriptional programming, enabling the successful establishment of AM symbiosis. In order to prevent hyper-colonization and to maintain a mutually beneficial association, the host plants precisely monitor and control AM symbiosis during the post-symbiotic stage via different molecular strategies. While previous studies have elucidated how host plant receptors and receptor-mediated signaling regulate AM symbiosis, the molecular details underlying these processes remain poorly understood. The recent identification of a rice (Oryza sativa) CHITIN-ELICITOR RECEPTOR-KINASE 1 (OsCERK1) interaction partner MYC FACTOR RECEPTOR 1 (OsMYR1), as well as new insights into D14L-receptor- and SUPER NUMERIC NODULES 1 (SUNN1) receptor-mediated signaling have improved our understanding of how host plant receptors and their corresponding signaling regulate AM symbiosis. The present review summarizes these and other current findings that have increased our limited understanding of receptor-mediated signaling mechanisms involved in the regulation of AM symbiosis. The identified receptors and/or their downstream signaling components could potentially be used to engineer economically-important crops with improved agronomic traits by conferring the ability to control the colonization of AM fungi in a precise manner.


Author(s):  
Javier Puy ◽  
Carlos Perez Carmona ◽  
Inga Hiiesalu ◽  
Maarja Opik ◽  
Mari Moora ◽  
...  

Phenotypic plasticity is essential for organisms to adapt to local ecological conditions. Little is known about how mutualistic interactions, such as arbuscular mycorrhizal (AM) symbiosis, mediate plant phenotypic plasticity and to what extent this plasticity may be heritable (i.e. transgenerational effects). We tested for plant plasticity within- and across-generations in response to AM symbiosis and varying water availability in a full factorial experiment over two generations, using the perennial apomictic herb Taraxacum brevicorniculatum. We examined changes in phenotype, performance, and AM fungal colonization of the offspring throughout plant development. AM symbiosis and water availability triggered phenotypic changes during the life cycle of plants. Additionally, both triggered adaptive transgenerational effects, especially detectable during the juvenile stage. Drought stress and absence of AM fungi caused concordant plant phenotypic modifications towards a stress-coping phenotype within- and across-generations. AM fungal colonization of offspring was also affected by the parental environment. AM symbiosis can trigger transgenerational effects, including changes in functional traits related to resource-use acquisition and AM fungal colonization of the offspring, in turn affecting the biotic interaction. Thus, transgenerational effects of mycorrhizal symbiosis are not limited to plant fitness, but also improve plants ability to cope with environmental stress.


Botany ◽  
2018 ◽  
Vol 96 (2) ◽  
pp. 135-144 ◽  
Author(s):  
María Soraya Salloum ◽  
María Florencia Menduni ◽  
Celina Mercedes Luna

Modern breeding programs may cause a reduction in plant responsiveness to arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that responses such as higher arbuscule formation and mycorrhizal dependency (MD) in unimproved soybean genotypes than in improved genotypes is related to drought stress tolerance caused by enhanced growth parameters and oxidative stress regulation. Firstly, four unimproved and four improved soybean genotypes were compared under well-watered conditions. After 20 days, all of the unimproved soybean genotypes showed increased arbuscule formation, as well as a positive and higher MD index in foliar mineral nutrient and growth parameters compared with the four improved genotypes. Secondly, tolerance to drought stress was evaluated in the two improved soybean genotypes and the two unimproved genotypes selected for the most contrasting response to arbuscule formation under well-watered conditions. After 20 days of 30% of field capacity, arbuscule formation was higher in the unimproved than improved genotypes. Mycorrhizal dependency evaluated as leaf area as well as shoot and root dry mass were highest in the unimproved AM genotypes. Moreover, levels of malondiadehide were lower and proline was higher in the unimproved rather than the improved genotypes. The potential capacity of arbuscule formation is discussed as a selection criterion to identify improved soybean genotypes with increased efficiency under well-watered conditions and an enhanced capacity to relieve drought stress.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dong Huang ◽  
Qian Wang ◽  
Zhijun Zhang ◽  
Guangquan Jing ◽  
Mengnan Ma ◽  
...  

AbstractDrought leads to reductions in plant growth and crop yields. Arbuscular mycorrhizal fungi (AMF), which form symbioses with the roots of the most important crop species, alleviate drought stress in plants. In the present work, we identified 14 GH3 genes in apple (Malus domestica) and provided evidence that MdGH3-2 and MdGH3-12 play important roles during AM symbiosis. The expression of both MdGH3-2 and MdGH3-12 was upregulated during mycorrhization, and the silencing of MdGH3-2/12 had a negative impact on AM colonization. MdGH3-2/12 silencing resulted in the downregulation of five genes involved in strigolactone synthesis, and there was a corresponding change in root strigolactone content. Furthermore, we observed lower root dry weights in RNAi lines under AM inoculation conditions. Mycorrhizal transgenic plants showed greater sensitivity to drought stress than WT, as indicated by their higher relative electrolytic leakage and lower relative water contents, osmotic adjustment ability, ROS scavenging ability, photosynthetic capacity, chlorophyll fluorescence values, and abscisic acid contents. Taken together, these data demonstrate that MdGH3-2/12 plays an important role in AM symbiosis and drought stress tolerance in apple.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manoj-Kumar Arthikala ◽  
Kalpana Nanjareddy ◽  
Lourdes Blanco ◽  
Xóchitl Alvarado-Affantranger ◽  
Miguel Lara

AbstractTarget of rapamycin (TOR) is a conserved central growth regulator in eukaryotes that has a key role in maintaining cellular nutrient and energy status. Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts that assist the plant in increasing nutrient absorption from the rhizosphere. However, the role of legume TOR in AM fungal symbiosis development has not been investigated. In this study, we examined the function of legume TOR in the development and formation of AM fungal symbiosis. RNA-interference-mediated knockdown of TOR transcripts in common bean (Phaseolus vulgaris) hairy roots notably suppressed AM fungus-induced lateral root formation by altering the expression of root meristem regulatory genes, i.e., UPB1, RGFs, and sulfur assimilation and S-phase genes. Mycorrhized PvTOR-knockdown roots had significantly more extraradical hyphae and hyphopodia than the control (empty vector) roots. Strong promoter activity of PvTOR was observed at the site of hyphal penetration and colonization. Colonization along the root length was affected in mycorrhized PvTOR-knockdown roots and the arbuscules were stunted. Furthermore, the expression of genes induced by AM symbiosis such as SWEET1, VPY, VAMP713, and STR was repressed under mycorrhized conditions in PvTOR-knockdown roots. Based on these observations, we conclude that PvTOR is a key player in regulating arbuscule development during AM symbiosis in P. vulgaris. These results provide insight into legume TOR as a potential regulatory factor influencing the symbiotic associations of P. vulgaris and other legumes.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 241-251 ◽  
Author(s):  
Ylva Lekberg ◽  
Roger T. Koide

Our knowledge of arbuscular mycorrhizal (AM) function is largely based on results from short-term studies in controlled environments. While these have provided many important insights into the potential effects of the symbiosis on the two symbionts and their communities, they may have also inadvertently led to faulty assumptions about the function of the symbiosis in natural settings. Here we highlight the consequences of failing to consider the AM symbiosis from the perspectives of community ecology and evolutionary biology. Also, we argue that by distinguishing between physiological and evolutionary viewpoints, we may be able to resolve controversies regarding the mutualistic vs. parasitic nature of the symbiosis. Further, while most AM research has emphasized resource transfers, primarily phosphate and carbohydrate, our perceptions of parasitism, cheating, bet-hedging, and partner choice would most likely change if we considered other services. Finally, to gain a fuller understanding of the role of the AM symbiosis in nature, we need to better integrate physiological processes of plants and their AM fungi with their naturally occurring temporal and spatial patterns. It is our hope that this article will generate some fruitful discussions and make a contribution toward this end.


2021 ◽  
Vol 7 (8) ◽  
pp. 671
Author(s):  
Xiao Lou ◽  
Xiangyu Zhang ◽  
Yu Zhang ◽  
Ming Tang

The simultaneous effects of arbuscular mycorrhizal (AM) fungi and abscisic acid (ABA) on the tolerance of plants to heavy metal (HM) remain unclear. A pot experiment was carried out to clarify the effects of simultaneous applications of AM fungi and ABA on plant growth, Zn accumulation, endogenous ABA contents, proline metabolism, and the oxidative injury of black locust (Robinia pseudoacacia L.) exposed to excess Zn stress. The results suggested that exogenously applied ABA positively enhanced AM colonization, and that the growth of plants only with AM fungi was improved by ABA application. Under Zn stress, AM inoculation and ABA application increased the ABA content in the root/leaf (increased by 48–172% and 92%, respectively) and Zn content in the root/shoot (increased by 63–152% and 61%, respectively) in AM plants, but no similar trends were observed in NM plants. Additionally, exogenous ABA addition increased the proline contents of NM roots concomitantly with the activities of the related synthases, whereas it reduced the proline contents and the activity of Δ1-pyrroline-5-carboxylate synthetase in AM roots. Under Zn stress, AM inoculation and ABA application decreased H2O2 contents and the production rate of O2, to varying degrees. Furthermore, in the roots exposed to Zn stress, AM inoculation augmented the activities of SOD, CAT, POD and APX, and exogenously applied ABA increased the activities of SOD and POD. Overall, AM inoculation combined with ABA application might be beneficial to the survival of black locust under Zn stress by improving AM symbiosis, inhibiting the transport of Zn from the roots to the shoots, increasing the distribution of ABA in roots, and stimulating antioxidant defense systems.


2011 ◽  
Vol 57 (No. 12) ◽  
pp. 541-546 ◽  
Author(s):  
G. Qiao ◽  
X.P. Wen ◽  
L.F. Yu ◽  
X.B. Ji

  Pigeon pea (Cajanus cajan) has been rapidly grown in the drought-striken Karst regions of southwest China. Present research aimed to investigate the effects of arbuscular mycorrhizae (AM) on the drought tolerance of pigeon pea, as well as to elucidate the physiological responses of AM-colonized seedlings to the water deficit. As subjected to drought stress, AM symbiosis (AMD) highly led to the positive effects on root system, plant height and stem diameter. AMD demonstrated a remarkably higher chlorophyll content, photosynthetic rate and stomatal conductance. The soluble sugar in AMD was significantly higher than that of the non-AM seedlings (NAMD), indicating the enhanced tolerance at least partially correlated with osmotic solute. Conversely, the proline (Pro) of AMD was lower, revealing the excessive Pro was not imperative for drought tolerance. After 30 days drought stress, AMD gave around a third less lipid peroxides than that of NAMD. Rather, the root activities of AMD were significantly higher than that of the latter after 10 days drought stress. Thereby, AM fungi might substantially elevate the tolerance to drought of pigeon pea, and the cumulative effects contributed to the enhanced tolerance. To date, this has been the first report concerning the enhancement of drought tolerance via AM colonization in this legume species.  


2020 ◽  
Vol 21 (5) ◽  
pp. 1748
Author(s):  
Gabriela Quiroga ◽  
Gorka Erice ◽  
Ricardo Aroca ◽  
Juan Manuel Ruiz-Lozano

Boron (B) is an essential micronutrient for higher plants, having structural roles in primary cell walls, but also other functions in cell division, membrane integrity, pollen germination or metabolism. Both high and low B levels negatively impact crop performance. Thus, plants need to maintain B concentration in their tissues within a narrow range by regulating transport processes. Both active transport and protein-facilitated diffusion through aquaporins have been demonstrated. This study aimed at elucidating the possible involvement of some plant aquaporins, which can potentially transport B and are regulated by the arbuscular mycorrhizal (AM) symbiosis in the plant B homeostasis. Thus, AM and non-AM plants were cultivated under 0, 25 or 100 μM B in the growing medium and subjected or not subjected to drought stress. The accumulation of B in plant tissues and the regulation of plant aquaporins and other B transporters were analyzed. The benefits of AM inoculation on plant growth (especially under drought stress) were similar under the three B concentrations assayed. The tissue B accumulation increased with B availability in the growing medium, especially under drought stress conditions. Several maize aquaporins were regulated under low or high B concentrations, mainly in non-AM plants. However, the general down-regulation of aquaporins and B transporters in AM plants suggests that, when the mycorrhizal fungus is present, other mechanisms contribute to B homeostasis, probably related to the enhancement of water transport, which would concomitantly increase the passive transport of this micronutrient.


2008 ◽  
Vol 20 (1) ◽  
pp. 29-37 ◽  
Author(s):  
José Beltrano ◽  
Marta G. Ronco

The aim of this paper was to investigate the contribution of the arbuscular mycorrhizal fungus Glomus claroideum to drought stress tolerance in wheat plants grown under controlled conditions in a growth chamber, and subjected to moderate or severe water stress and rewatering. Water stress tolerance was determined through total dry weight, leaf relative water content, leakage of solutes and leaf chlorophyll and protein concentrations in mycorrhizal and non-mycorrhizal wheat plants. Total dry weight and leaf chlorophyll concentrations were significantly higher in mycorrhizal plants after moderate or severe water stress treatments compared with non-mycorrhizal ones. Electrolyte leakage was significantly lower in water-stressed inoculated plants. Compared to non-inoculated plants, leaf relative water content and total protein concentration of inoculated individuals increased only under severe water stress. When irrigation was re-established, mycorrhizal plants increased their total dry weight and leaf chlorophyll concentration, and recovered cell membrane permeability in leaves compared with non-mycorrhizal plants. In conclusion, root colonization by G. claroideum could be an adequate strategy to alleviate the deleterious effects of drought stress and retard the senescence syndrome in wheat.


Sign in / Sign up

Export Citation Format

Share Document