scholarly journals Trade-Offs for Viruses in Overcoming Innate Immunities in Plants

2016 ◽  
Vol 29 (8) ◽  
pp. 595-598 ◽  
Author(s):  
Yuri Miyashita ◽  
Go Atsumi ◽  
Kenji S. Nakahara

Plants recognize viral infection via an immune receptor, i.e., nucleotide-binding site (NB)-leucine-rich repeat (LRR) proteins. Another immune receptor, receptor-like kinase proteins, which share an LRR domain with NB-LRRs, perceive conserved molecules of pathogens called pathogen- or microbe-associated molecular patterns, but NB-LRRs generally perceive particular viral proteins. As viruses can evolve more rapidly than the host immune system, how do plant immune systems, which rely on the perception of proteins, remain effective? Viral adaptive evolution may be controlled by penalties that result from mutations in viral proteins that are perceived by NB-LRRs. Our recent studies in pea (Pisum sativum) suggest a penalty of increased susceptibility to another immune system. When a viral protein mutates to evade one immune system, the virus with the mutated protein becomes more susceptible to another. Such antagonistic pleiotropy of a viral protein by two independent plant immune systems may have precedents. Plants may rely on pairs of immune systems to constrain adaptive evolution by viruses and thereby maintain durable antiviral immunity.

Biologics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 89-110
Author(s):  
Neslihan Yeşilyurt ◽  
Birsen Yılmaz ◽  
Duygu Ağagündüz ◽  
Raffaele Capasso

Intestinal microbiota interacts with other systems, especially the immune system, which is responsible for protecting the body by recognizing “stranger” (pathogen associated molecular patterns-PAMPs) and “danger” (damage-associated molecular patterns-DAMPs) molecular motifs. In this manner, it plays an important role in the pathogenesis of various diseases and health. Despite the use of probiotics that modulate the intestinal microbiota in providing health benefits and in the treatment of diseases, there are some possible concerns about the possibility of developing adverse effects, especially in people with suppressed immune systems. Since probiotics provide health benefits with bioactive compounds, studies are carried out on the use of products containing non-living probiotic microorganisms (paraprobiotics) and/or their metabolites (postbiotics) instead of probiotic products. It is even reported that these microbial compounds have more immunomodulatory activities than living microorganisms via some possible mechanism and eliminates some disadvantages of probiotics. Considering the increasing use of functional foods in health and disease, further studies are needed with respect to the benefits and advantages of parabiotic and/or postbiotic use in the food and pharmaceutical industry as well as immune system modulation. Although probiotics have been extensive studied for a long time, it seems that postbiotics are promising tools for future research and applications according to the recent literature. This review aimed to evaluate the interaction of probiotics and postbiotics with the immune systems and also their advantages and disadvantages in the area of food-pharmaceutical industry and immune system modulation.


2020 ◽  
Vol 10 (2) ◽  
pp. 305-314
Author(s):  
I. N. Zhilinskaya

A comparative analysis on search for amino acid sequences in viral proteins causing respiratory infections (or respiratory infections syndrome) homologous to amino acid sequences from some human immune proteins was performed. The following viruses were used for comparative computer analysis: coronavirus (SARS-CoV), serotype C subgroup adenovirus C (adenoid 71 strain), measles virus (ICHINOSE-BA strain), rubella (Therien strain) and respiratory syncytial (B1 strain) virus. The search for homologous sequences in viral and human immune proteins was carried out by computer comparison of 12 amino acid fragments, which were assigned as homologous at identity in ≥ 8 positions. The data obtained showed that viral proteins contained homologous motifs in several host immune proteins involved in regulating both the inflammatory response and immune response. Mechanistically, all viruses studied were characterized by sequences homologous to host immune proteins such as complement system proteins, integrins, apoptosis inhibitory proteins, interleukins, and toll-like receptors. Such cellular proteins are actively involved in regulating host inflammatory process and immune response formation. Upon that, a set of host immune proteins, to which homologous fragments were found in viral proteins, was individual for each virus. Interestingly, the largest amount of homologous fragments (up to 20) was mainly concentrated in viral proteins with polymerase and protease activity suggesting that these proteins apart to their major role were involved in production of viral nucleic acids and might participate in regulating host immune system. Envelope, internal and non-structural viral proteins, homologous fragments were detected in much smaller quantities (from 1 to 4). In addition, two fragments homologous to various motifs of the same cellular protein were detected in some viral proteins. Thus, the data obtained further support our understanding that signs of immune system disorders in viral infections can result from multi-layered processes associated with modulation of host innate and adaptive immune system, and open up new approaches to study interaction of viruses with host immune system and identify new functions of viral proteins.


Author(s):  
María Soledad Miró ◽  
Cecilia Vigezzi ◽  
Emilse Rodriguez ◽  
Paula Alejandra Icely ◽  
Juan Pablo Caeiro ◽  
...  

In recent years, the rise of human fungal infections has been associated to lack of early diagnosis, uneffective antifungal therapies and vaccines. Disturbance in immune homeostasis, which can be caused by medical interventions and immunosuppression induced by disease, are well known as risk factors for these pathologies. Cells of the innate immune system are equipped with surface and cytoplasmic receptors for recognition of microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns (PAMPs) that are crucial for the activation and killing of pathogenic fungi by immune system.  This review will outline the PRRs and cells required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17. Finally, naturally occurring human mutations involved in the increased susceptibility to fungal infections are also discussed


Dental Update ◽  
2021 ◽  
Vol 48 (1) ◽  
pp. 76-81
Author(s):  
Lakshman Samaranayake ◽  
Kausar Sadia Fakhruddin

Transplant pioneer, Peter Medawar, once said that a virus is ‘simply a piece of bad news wrapped in protein’. One could opine then, that the new COVID-19 vaccines are ‘Bits of corona viral proteins in gift wrapping.’ For, most of the COVID-19 vaccines are based on the principle that pre-exposure of the vaccinee's host immune system to the spike proteins of SARS-CoV-2, the first part of the viral anatomy that touches the vulnerable host cells, will elicit an effective antibody response to curb potential future infections. COVID-19 vaccines come in many sizes and shapes, and clearly, a return to normal, post-COVID dental practice entails protecting all members of the dental team with an appropriate vaccine, as and when available. We provide a thumbnail sketch of the COVID-19 vaccines currently in the offing, which we hope will be helpful for decision-making for choice of vaccine. The commentary ends with a discussion of the impact of COVID-19 vaccines on dentistry, in general.


2019 ◽  
Author(s):  
Anne Chevallereau ◽  
Sean Meaden ◽  
Olivier Fradet ◽  
Mariann Landsberger ◽  
Alice Maestri ◽  
...  

Many bacteria encode CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats; CRISPR-associated) adaptive immune systems to protect themselves against their viruses (phages)1. To overcome resistance, phages have evolved anti-CRISPR proteins (Acr), which naturally vary in their potency to suppress the host immune system and avoid phage extinction2,3,4,5. However, these Acr-phages need to cooperate in order to overcome CRISPR-based resistance4,5: while many initial infections by Acr-phages are unsuccessful, they nonetheless lead to the production of Acr proteins, which generate immunosuppressed cells that can be successfully exploited by other Acr-phages in the population4,5. Here we test the prediction that phages lacking acr genes (Acr-negative phages) may exploit this cooperative behaviour6. We demonstrate that Acr-negative phages can indeed benefit from the presence of Acr-positive phages during pairwise competitions, but the extent of this exploitation depends on the potency of the Acr protein. Specifically, “strong” Acr proteins are more exploitable and benefit both phage types, whereas “weak” Acr proteins predominantly benefit Acr-positive phages only and therefore provide a greater fitness advantage during competition with Acr-negative phages. This work further helps to explain what defines the strength of an Acr protein, how selection acts on different Acr types in a phage community context, and how this can shape the dynamics of phage populations in natural communities.


2018 ◽  
Author(s):  
Mariann Landsberger ◽  
Sylvain Gandon ◽  
Sean Meaden ◽  
Hélène Chabas ◽  
Angus Buckling ◽  
...  

SummarySome phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage taking down the host CRISPR-Cas immune system to allow a second Acr- phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points towards higher phage densities. Collectively these data help to understand how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.HighlightsBacteria with CRISPR immunity remain partially resistant to Acr-phageSequentially infecting Acr phages cooperate to overcome CRISPR resistanceAcr-phage epidemiology depends on the initial phage densityCRISPR resistant bacteria can drive Acr phages extincteTOC blurbSome phages encode Acr proteins that block bacterial CRISPR-Cas immune systems. Although CRISPR-Cas can clear the first infection, this Acr-phage still suppresses the host immune system, which can be exploited by other Acr-phages. This is critical for Acr-phage amplification, but this “cooperation” only works beyond a critical Acr-phage density threshold.


2014 ◽  
Vol 58 (4) ◽  
pp. 2426-2429 ◽  
Author(s):  
Inmaculada Martínez-Ramos ◽  
Xavier Mulet ◽  
Bartolomé Moyá ◽  
Mariette Barbier ◽  
Antonio Oliver ◽  
...  

ABSTRACTWe evaluated the resistance to complement-mediated killing of a collection of isogenicPseudomonas aeruginosastrains expressing different antimicrobial resistance phenotypes. Only thenfxBmutant demonstrated increased susceptibility to complement compared with that for the wild-type strain. This increment was due to the overexpression of MexCD-OprJ, which led to increased C3 opsonization and a reduced ability to infect the lungs of mice. Our results show that the acquisition of antibiotic resistance may alter the interplay ofP. aeruginosawith the host immune system.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Priya Raja ◽  
Jennifer S. Lee ◽  
Dongli Pan ◽  
Jean M. Pesola ◽  
Donald M. Coen ◽  
...  

ABSTRACTLatent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neuronsin vivo. Studies of anICP0nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections.IMPORTANCELatent infection by viruses usually involves minimizing viral protein synthesis so that the host immune system cannot recognize the infected cells and eliminate them. Herpes simplex virus has been thought to express only noncoding RNAs as abundant gene products during latency. In this study, we found genetic evidence that an HSV lytic protein is functional during latent infection, and this protein may provide a new target for antivirals that target both lytic and latent infections.


2021 ◽  
Author(s):  
Arghavan Alisoltani ◽  
Lukasz Jaroszewski ◽  
Mallika Iyer ◽  
Arash Iranzadeh ◽  
Adam Godzik

Most of the attention in the surveillance of evolution of SARS-CoV-2 has been centered on single nucleotide substitutions in the spike glycoprotein. We show that in-frame deletions (IFDs) also play a significant role in the evolution of viral genome. The percentage of genomes and lineages with IFDs is growing rapidly and they co-occur independently in multiple lineages, including emerging variants of concerns. IFDs distribution is correlated with spike mutations associated with immune escape and concentrated in proteins involved in interactions with the host immune system. Structural analysis suggests that IFDs remodel viral proteins surfaces at common epitopes and interaction interfaces, affecting the virus interactions with the immune system. We hypothesize that the increased frequency of IFDs is an adaptive response to elevated global population immunity.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 259-261
Author(s):  
Aamir Khan ◽  
Rajni K. Gurmule

Vasavaleha is one of the best medicine given for respiratory diseases. Corona viruses typically affect the respiratory system, causing symptoms such as coughing, fever and shortness of breath. It also affects host immune system of human body. Spreading rate of this disease is very high. Whole world is seeking for the treatment which can uproots this diseases. There in no vaccine available till date against this pandemic disease. Ayurveda mainly focuses on prevention of diseases alongwith its total cure. Rajyakshma Vyadhi is MadhyamMarga Roga as per Ayurveda. It shows many symptoms such as Kasa, Shwasa etc. By overall view of Covid 19, shows its resemblance with Rajyakshma Vyadhi described in Ayurveda. Vasavaleha is a Kalpa which is described in Rogadhikara of Rajyakshma. It shows Kasahara, Shwashara properties. It consists of Vasa, Pipalli, Madhu and Goghrita. These components shows actions like bronchodilation, antitussive effect and many more other actions. Pipalli shows important Rasayana effect. So in present review, we have tried to focus on role of Vasavaleha in the management of Covid 19. This can be used as preventive as well as adjuvant medication in treating Covid 19. There is need of further clinical research to rule of exact action of Vasavaleha against Covid 19.


Sign in / Sign up

Export Citation Format

Share Document